# Natural Language Toolkit: NLTK's very own tokenizer, slightly modified. # # Copyright (C) 2001-2023 NLTK Project # Author: Liling Tan # Tom Aarsen <> (modifications) # URL: import re import warnings from typing import Iterator, List, Tuple def align_tokens(tokens, sentence): """ This module attempt to find the offsets of the tokens in *s*, as a sequence of ``(start, end)`` tuples, given the tokens and also the source string. >>> from nltk.tokenize import TreebankWordTokenizer >>> from nltk.tokenize.util import align_tokens >>> s = str("The plane, bound for St Petersburg, crashed in Egypt's " ... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh " ... "on Saturday.") >>> tokens = TreebankWordTokenizer().tokenize(s) >>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23), ... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54), ... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89), ... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122), ... (123, 131), (131, 132)] >>> output = list(align_tokens(tokens, s)) >>> len(tokens) == len(expected) == len(output) # Check that length of tokens and tuples are the same. True >>> expected == list(align_tokens(tokens, s)) # Check that the output is as expected. True >>> tokens == [s[start:end] for start, end in output] # Check that the slices of the string corresponds to the tokens. True :param tokens: The list of strings that are the result of tokenization :type tokens: list(str) :param sentence: The original string :type sentence: str :rtype: list(tuple(int,int)) """ point = 0 offsets = [] for token in tokens: try: start = sentence.index(token, point) except ValueError as e: raise ValueError(f'substring "{token}" not found in "{sentence}"') from e point = start + len(token) offsets.append((start, point)) return offsets class NLTKWordTokenizer: """ The NLTK tokenizer that has improved upon the TreebankWordTokenizer. This is the method that is invoked by ``word_tokenize()``. It assumes that the text has already been segmented into sentences, e.g. using ``sent_tokenize()``. The tokenizer is "destructive" such that the regexes applied will munge the input string to a state beyond re-construction. It is possible to apply `TreebankWordDetokenizer.detokenize` to the tokenized outputs of `NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to revert to the original string. """ # Starting quotes. STARTING_QUOTES = [ (re.compile("([«“‘„]|[`]+)", re.U), r" \1 "), (re.compile(r"^\""), r' " '), (re.compile(r"(``)"), r" \1 "), (re.compile(r"([ \(\[{<])(\"|\'{2})"), r'\1 " '), # (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"), ] # Ending quotes. ENDING_QUOTES = [ (re.compile("([»”’])", re.U), r" \1 "), (re.compile(r"''"), " '' "), (re.compile(r'"'), ' " '), (re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "), # (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "), ] # For improvements for starting/closing quotes from TreebankWordTokenizer, # see discussion on https://github.com/nltk/nltk/pull/1437 # Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on # - chervon quotes u'\xab' and u'\xbb' . # - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d' # See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608 # Also, behavior of splitting on clitics now follows Stanford CoreNLP # - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b # Punctuation. PUNCTUATION = [ (re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "), (re.compile(r"([:,])([^\d])"), r" \1 \2"), (re.compile(r"([:,])$"), r" \1 "), ( re.compile(r"\.{2,}", re.U), r" \g<0> ", ), # See https://github.com/nltk/nltk/pull/2322 (re.compile(r"[;@#$%&]"), r" \g<0> "), ( re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'), r"\1 \2\3 ", ), # Handles the final period. (re.compile(r"[?!]"), r" \g<0> "), (re.compile(r"([^'])' "), r"\1 ' "), ( re.compile(r"[*]", re.U), r" \g<0> ", ), # See https://github.com/nltk/nltk/pull/2322 ] # Pads parentheses PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ") # Optionally: Convert parentheses, brackets and converts them to PTB symbols. # CONVERT_PARENTHESES = [ # (re.compile(r"\("), "-LRB-"), # (re.compile(r"\)"), "-RRB-"), # (re.compile(r"\["), "-LSB-"), # (re.compile(r"\]"), "-RSB-"), # (re.compile(r"\{"), "-LCB-"), # (re.compile(r"\}"), "-RCB-"), # ] DOUBLE_DASHES = (re.compile(r"--"), r" -- ") # List of contractions adapted from Robert MacIntyre's tokenizer. # _contractions = MacIntyreContractions() # CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2)) # CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3)) def tokenize( self, text: str ) -> List[str]: r"""Return a tokenized copy of `text`. >>> from nltk.tokenize import NLTKWordTokenizer >>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.''' >>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36', 'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.'] >>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36', 'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.'] :param text: A string with a sentence or sentences. :type text: str :param convert_parentheses: if True, replace parentheses to PTB symbols, e.g. `(` to `-LRB-`. Defaults to False. :type convert_parentheses: bool, optional :param return_str: If True, return tokens as space-separated string, defaults to False. :type return_str: bool, optional :return: List of tokens from `text`. :rtype: List[str] """ for regexp, substitution in self.STARTING_QUOTES: text = regexp.sub(substitution, text) for regexp, substitution in self.PUNCTUATION: text = regexp.sub(substitution, text) # Handles parentheses. regexp, substitution = self.PARENS_BRACKETS text = regexp.sub(substitution, text) # Handles double dash. regexp, substitution = self.DOUBLE_DASHES text = regexp.sub(substitution, text) # add extra space to make things easier text = " " + text + " " for regexp, substitution in self.ENDING_QUOTES: text = regexp.sub(substitution, text) return text.split() def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]: r""" Returns the spans of the tokens in ``text``. Uses the post-hoc nltk.tokens.align_tokens to return the offset spans. >>> from nltk.tokenize import NLTKWordTokenizer >>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).''' >>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23), ... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38), ... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59), ... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)] >>> list(NLTKWordTokenizer().span_tokenize(s)) == expected True >>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in', ... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')', ... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.'] >>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected True :param text: A string with a sentence or sentences. :type text: str :yield: Tuple[int, int] """ raw_tokens = self.tokenize(text) # Convert converted quotes back to original double quotes # Do this only if original text contains double quote(s) or double # single-quotes (because '' might be transformed to `` if it is # treated as starting quotes). # if ('"' in text) or ("''" in text): # # Find double quotes and converted quotes # matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)] # # Replace converted quotes back to double quotes # tokens = [ # matched.pop(0) if tok in ['"', "``", "''"] else tok # for tok in raw_tokens # ] # else: tokens = raw_tokens yield from align_tokens(tokens, text)