File size: 1,227 Bytes
cf6a26b
03c8d09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

import gradio as gr
from fastai.vision.all import *

from pathlib import Path
import PIL
import torchvision.transforms as transforms



device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = torch.jit.load("unet.pth")
model = model.cpu()
model.eval()

def transform_image(image):
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    
image = transforms.Resize((480,640))(Image.fromarray(image))
tensor = my_transforms(image_aux).unsqueeze(0).to(device)


model.to(device)
with torch.no_grad():
    outputs = model(tensor)

outputs = torch.argmax(outputs,1)


mask = np.array(outputs.cpu())
mask[mask==0]=255
mask[mask==1]=150
mask[mask==2]=76
mask[mask==3]=25
mask[mask==4]=0

mask=np.reshape(mask,(480,640))
return Image.fromarray(mask.astype('uint8'))


    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=transform_image, inputs=gr.inputs.Image(shape=(640, 480)), outputs=gr.outputs.Image(),examples=['color_188.jpg','color_189.jpg']).launch(share=False)