luis56125 commited on
Commit
569737e
1 Parent(s): c3f4b33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -33
app.py CHANGED
@@ -1,49 +1,48 @@
1
-
2
- import gradio as gr
3
  from fastai.vision.all import *
4
-
 
5
  from pathlib import Path
6
  import PIL
7
- import torchvision.transforms as transforms
8
-
9
-
10
 
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
  model = torch.jit.load("unet.pth")
13
  model = model.cpu()
14
  model.eval()
15
 
16
- def transform_image(image):
17
- my_transforms = transforms.Compose([transforms.ToTensor(),
18
- transforms.Normalize(
19
- [0.485, 0.456, 0.406],
20
- [0.229, 0.224, 0.225])])
21
- image_aux = image
22
-
23
- image = transforms.Resize((480,640))(Image.fromarray(image))
24
- tensor = my_transforms(image_aux).unsqueeze(0).to(device)
25
 
 
26
 
27
- model.to(device)
28
- with torch.no_grad():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  outputs = model(tensor)
30
-
31
- outputs = torch.argmax(outputs,1)
32
-
33
-
34
- mask = np.array(outputs.cpu())
35
- mask[mask==0]=255
36
- mask[mask==1]=150
37
- mask[mask==2]=76
38
- mask[mask==3]=25
39
- mask[mask==4]=0
40
-
41
- mask=np.reshape(mask,(480,640))
42
- return Image.fromarray(mask.astype('uint8'))
43
-
44
 
45
 
46
  # Creamos la interfaz y la lanzamos.
47
- gr.Interface(fn=transform_image, inputs=gr.inputs.Image(shape=(640, 480)), outputs=gr.outputs.Image(),examples=['color_188.jpg','color_189.jpg']).launch(share=False)
48
-
49
 
 
 
 
1
  from fastai.vision.all import *
2
+ import gradio as gr
3
+ import torchvision.transforms as transforms
4
  from pathlib import Path
5
  import PIL
 
 
 
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
  model = torch.jit.load("unet.pth")
9
  model = model.cpu()
10
  model.eval()
11
 
 
 
 
 
 
 
 
 
 
12
 
13
+ def transform_image(image):
14
 
15
+ #mask = PILMask.create(Path(str(image).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")))
16
+ #image = PIL.Image.open(image)
17
+ my_transforms = transforms.Compose([transforms.ToTensor(),
18
+ transforms.Normalize(
19
+ [0.485, 0.456, 0.406],
20
+ [0.229, 0.224, 0.225])])
21
+ image_aux = image
22
+ #my_transforms(image_aux).unsqueeze(0).to(device)
23
+ image = transforms.Resize((480,640))(Image.fromarray(image))
24
+ tensor = my_transforms(image_aux).unsqueeze(0).to(device)
25
+ #tensor = transform_image(image=image)
26
+
27
+
28
+
29
+ model.to(device)
30
+ with torch.no_grad():
31
  outputs = model(tensor)
32
+
33
+ outputs = torch.argmax(outputs,1)
34
+
35
+ mask = np.array(outputs.cpu())
36
+ mask[mask==0]=255
37
+ mask[mask==1]=150
38
+ mask[mask==2]=76
39
+ mask[mask==3]=25
40
+ mask[mask==4]=0
41
+
42
+ mask=np.reshape(mask,(480,640))
43
+ return Image.fromarray(mask.astype('uint8'))
 
 
44
 
45
 
46
  # Creamos la interfaz y la lanzamos.
47
+ gr.Interface(fn=transform_image, inputs=gr.inputs.Image(shape=(640, 480)), outputs=gr.outputs.Image(),examples=['color_156.jpg','color_179.jpg']).launch(share=False)
 
48