import gradio as gr from fastai.vision.all import * import torchvision.transforms as transforms import torch from PIL import Image import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = torch.jit.load("unet.pth") model = model.to(device) model.eval() def transform_image(image): my_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image = transforms.Resize((480,640))(Image.fromarray(image)) tensor = my_transforms(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs, 1) mask = np.array(outputs.cpu()) mask[mask==0]=255 mask[mask==1]=150 mask[mask==2]=76 mask[mask==3]=25 mask[mask==4]=0 mask = np.reshape(mask, (480, 640)) return Image.fromarray(mask.astype('uint8')) # Ajuste de la creación de la interfaz interface = gr.Interface(fn=transform_image, inputs=gr.components.Image(width=640, height=480), outputs=gr.components.Image(), examples=['color_154.jpg', 'color_189.jpg']) interface.launch(share=False)