Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- requirements (1).txt +4 -0
- streamlit-app.py +67 -0
requirements (1).txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
streamlit
|
4 |
+
Pillow>=8.0.0
|
streamlit-app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Define the function to load the model
|
9 |
+
def load_model(model_path, device):
|
10 |
+
weights = torchvision.models.DenseNet201_Weights.DEFAULT # best available weight
|
11 |
+
model = torchvision.models.densenet201(weights=weights).to(device)
|
12 |
+
model.classifier = torch.nn.Sequential(
|
13 |
+
torch.nn.Dropout(p=0.2, inplace=True),
|
14 |
+
torch.nn.Linear(in_features=1920, out_features=4, bias=True)
|
15 |
+
).to(device)
|
16 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
17 |
+
model.to(device)
|
18 |
+
model.eval()
|
19 |
+
return model
|
20 |
+
|
21 |
+
# Define the function for preprocessing the image
|
22 |
+
def preprocess_image(image):
|
23 |
+
transform = transforms.Compose([
|
24 |
+
transforms.Resize(64),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
|
27 |
+
])
|
28 |
+
return transform(image)
|
29 |
+
|
30 |
+
# Define the function for getting predictions
|
31 |
+
def get_prediction(model, image, device):
|
32 |
+
class_names = ['buffalo', 'elephant', 'rhino', 'zebra']
|
33 |
+
image = image.unsqueeze(0).to(device) # Add batch dimension and move to device
|
34 |
+
with torch.no_grad():
|
35 |
+
pred_logits = model(image)
|
36 |
+
pred_prob = torch.softmax(pred_logits, dim=1)
|
37 |
+
pred_label = torch.argmax(pred_prob, dim=1)
|
38 |
+
return class_names[pred_label.item()], pred_prob.max().item()
|
39 |
+
|
40 |
+
# Streamlit app starts here
|
41 |
+
st.title("Wild Animal Prediction App")
|
42 |
+
|
43 |
+
uploaded_file = st.file_uploader("Upload an image of one of the following: Bufallo, Elephant, Rhino, or Zebra", type=["jpg", "jpeg", "png"])
|
44 |
+
if uploaded_file is not None:
|
45 |
+
# Convert the file-like object to bytes, then open it with PIL
|
46 |
+
image_bytes = uploaded_file.getvalue()
|
47 |
+
image = Image.open(io.BytesIO(image_bytes))
|
48 |
+
|
49 |
+
# Display the uploaded image
|
50 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
51 |
+
|
52 |
+
# Predict button
|
53 |
+
if st.button('Predict'):
|
54 |
+
# Set device
|
55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
+
|
57 |
+
# Load the model
|
58 |
+
model_path = 'model/densenetafri.pth' # Fixed model path
|
59 |
+
model = load_model(model_path, device)
|
60 |
+
|
61 |
+
# Preprocess the image and predict
|
62 |
+
preprocessed_image = preprocess_image(image)
|
63 |
+
prediction, probability = get_prediction(model, preprocessed_image, device)
|
64 |
+
|
65 |
+
# Display the prediction
|
66 |
+
st.write(f"Prediction: {prediction}, Probability: {probability:.3f}")
|
67 |
+
|