Spaces:
Sleeping
Sleeping
Terry Zhuo
commited on
Commit
•
6e12956
1
Parent(s):
2d714f8
update
Browse files
app.py
CHANGED
@@ -5,15 +5,82 @@ import requests
|
|
5 |
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import Repository
|
8 |
-
from
|
|
|
9 |
|
10 |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
|
11 |
|
12 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
API_URL = "https://api-inference.huggingface.co/models/bigcode/starcoder"
|
15 |
-
API_URL_BASE ="https://api-inference.huggingface.co/models/bigcode/starcoderbase"
|
16 |
-
API_URL_PLUS = "https://api-inference.huggingface.co/models/bigcode/starcoderplus"
|
17 |
|
18 |
FIM_PREFIX = "<fim_prefix>"
|
19 |
FIM_MIDDLE = "<fim_middle>"
|
@@ -75,26 +142,19 @@ theme = gr.themes.Monochrome(
|
|
75 |
],
|
76 |
)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
)
|
82 |
-
client_base = Client(
|
83 |
-
API_URL_BASE, headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
84 |
-
)
|
85 |
-
client_plus = Client(
|
86 |
-
API_URL_PLUS, headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
87 |
-
)
|
88 |
|
89 |
def generate(
|
90 |
-
prompt, temperature=0.
|
91 |
):
|
92 |
|
93 |
temperature = float(temperature)
|
94 |
if temperature < 1e-2:
|
95 |
temperature = 1e-2
|
96 |
top_p = float(top_p)
|
97 |
-
fim_mode = False
|
98 |
|
99 |
generate_kwargs = dict(
|
100 |
temperature=temperature,
|
@@ -105,37 +165,21 @@ def generate(
|
|
105 |
seed=42,
|
106 |
)
|
107 |
|
108 |
-
if
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
elif
|
119 |
-
|
120 |
else:
|
121 |
-
|
122 |
|
123 |
-
if fim_mode:
|
124 |
-
output = prefix
|
125 |
-
else:
|
126 |
-
output = prompt
|
127 |
-
|
128 |
-
previous_token = ""
|
129 |
-
for response in stream:
|
130 |
-
if response.token.text == "<|endoftext|>":
|
131 |
-
if fim_mode:
|
132 |
-
output += suffix
|
133 |
-
else:
|
134 |
-
return output
|
135 |
-
else:
|
136 |
-
output += response.token.text
|
137 |
-
previous_token = response.token.text
|
138 |
-
yield output
|
139 |
return output
|
140 |
|
141 |
|
@@ -167,16 +211,20 @@ css += share_btn_css + monospace_css + ".gradio-container {color: black}"
|
|
167 |
|
168 |
description = """
|
169 |
<div style="text-align: center;">
|
170 |
-
<h1>
|
171 |
</div>
|
172 |
<div style="text-align: left;">
|
173 |
-
<p>This is a demo to generate text and code with
|
|
|
174 |
<ul>
|
175 |
-
<li><a href="https://
|
176 |
-
<li><a href="https://
|
177 |
-
<li><a href="https://
|
|
|
|
|
|
|
178 |
</ul>
|
179 |
-
<p><b>Please note:</b> These models are not designed for instruction purposes
|
180 |
</div>
|
181 |
"""
|
182 |
disclaimer = """⚠️<b>Any use or sharing of this demo constitues your acceptance of the BigCode [OpenRAIL-M](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) License Agreement and the use restrictions included within.</b>\
|
@@ -186,11 +234,18 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
186 |
with gr.Column():
|
187 |
gr.Markdown(description)
|
188 |
with gr.Row():
|
189 |
-
|
190 |
-
["
|
191 |
-
value="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
label="Model",
|
193 |
-
info="Choose
|
194 |
)
|
195 |
with gr.Row():
|
196 |
with gr.Column():
|
@@ -264,8 +319,9 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
264 |
|
265 |
submit.click(
|
266 |
generate,
|
267 |
-
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty,
|
268 |
outputs=[output],
|
|
|
269 |
)
|
270 |
-
share_button.click(None, [], []
|
271 |
-
demo.queue(
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import Repository
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
from peft import PeftModel
|
10 |
|
11 |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
|
12 |
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
+
CHECKPOINT_URL = "Salesforce/codegen-350M-mono"
|
15 |
+
|
16 |
+
SQLMODEL_PREFIX_URL = "https://huggingface.co/luna-code/sqlmodel-codegen-350M-mono-prefix"
|
17 |
+
SFEPY_PREFIX_URL = "https://huggingface.co/luna-code/sfepy-codegen-350M-mono-prefix"
|
18 |
+
MEGENGINE_PREFIX_URL = "https://huggingface.co/luna-code/megengine-codegen-350M-mono-prefix"
|
19 |
+
MAIN_EVO_PREFIX_URL = "https://huggingface.co/luna-code/codegen-350M-mono-evo-prefix"
|
20 |
+
|
21 |
+
SQLMODEL_FFT_URL = "https://huggingface.co/luna-code/sqlmodel-codegen-350M-mono-fft"
|
22 |
+
SFEPY_FFT_URL = "https://huggingface.co/luna-code/sfepy-codegen-350M-mono-fft"
|
23 |
+
MEGENGINE_FFT_URL = "https://huggingface.co/luna-code/megengine-codegen-350M-mono-fft"
|
24 |
+
MAIN_EVO_FFT_URL = "https://huggingface.co/luna-code/codegen-350M-mono-evo-fft"
|
25 |
+
MAIN_FD_FFT_URL = "https://huggingface.co/luna-code/codegen-350M-mono-fd-fft"
|
26 |
+
|
27 |
+
LANGCHAIN_PREFIX_URL = "https://huggingface.co/luna-code/langchain-codegen-350M-mono-prefix"
|
28 |
+
LLAMAINDEX_PREFIX_URL = "https://huggingface.co/luna-code/llamaindex-codegen-350M-mono-prefix"
|
29 |
+
DSPY_PREFIX_URL = "https://huggingface.co/luna-code/dspy-codegen-350M-mono-prefix"
|
30 |
+
CS_EVO_PREFIX_URL = "https://huggingface.co/luna-code/cs-codegen-350M-mono-evo-prefix"
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_URL)
|
33 |
+
basemodel = AutoModelForCausalLM.from_pretrained(CHECKPOINT_URL, device_map="auto")
|
34 |
+
|
35 |
+
sql_prefix = PeftModel.from_pretrained(basemodel, SQLMODEL_PREFIX_URL, device_map="auto")
|
36 |
+
sfepy_prefix = PeftModel.from_pretrained(basemodel, SFEPY_PREFIX_URL, device_map="auto")
|
37 |
+
megengine_prefix = PeftModel.from_pretrained(basemodel, MEGENGINE_PREFIX_URL, device_map="auto")
|
38 |
+
main_evo_prefix = PeftModel.from_pretrained(basemodel, MAIN_EVO_PREFIX_URL, device_map="auto")
|
39 |
+
|
40 |
+
sqlmodel_fft = AutoModelForCausalLM.from_pretrained(SQLMODEL_FFT_URL, device_map="auto")
|
41 |
+
sfepy_fft = AutoModelForCausalLM.from_pretrained(SFEPY_FFT_URL, device_map="auto")
|
42 |
+
megengine_fft = AutoModelForCausalLM.from_pretrained(MEGENGINE_FFT_URL, device_map="auto")
|
43 |
+
main_evo_fft = AutoModelForCausalLM.from_pretrained(MAIN_EVO_FFT_URL, device_map="auto")
|
44 |
+
main_fd_fft = AutoModelForCausalLM.from_pretrained(MAIN_FD_FFT_URL, device_map="auto")
|
45 |
+
|
46 |
+
langchain_prefix = PeftModel.from_pretrained(basemodel, LANGCHAIN_PREFIX_URL, device_map="auto")
|
47 |
+
llamaindex_prefix = PeftModel.from_pretrained(basemodel, LLAMAINDEX_PREFIX_URL, device_map="auto")
|
48 |
+
dspy_prefix = PeftModel.from_pretrained(basemodel, DSPY_PREFIX_URL, device_map="auto")
|
49 |
+
cs_evo_prefix = PeftModel.from_pretrained(basemodel, CS_EVO_PREFIX_URL, device_map="auto")
|
50 |
+
|
51 |
+
# basemodel = ""
|
52 |
+
# sql_prefix = ""
|
53 |
+
# sfepy_prefix = ""
|
54 |
+
# megengine_prefix = ""
|
55 |
+
# main_evo_prefix = ""
|
56 |
+
# sqlmodel_fft = ""
|
57 |
+
# sfepy_fft = ""
|
58 |
+
# megengine_fft = ""
|
59 |
+
# main_evo_fft = ""
|
60 |
+
# main_fd_fft = ""
|
61 |
+
# langchain_prefix = ""
|
62 |
+
# llamaindex_prefix = ""
|
63 |
+
# dspy_prefix = ""
|
64 |
+
# cs_evo_prefix = ""
|
65 |
+
|
66 |
+
|
67 |
+
model_map = {
|
68 |
+
"Base": basemodel,
|
69 |
+
"SQLModel Prefix": sql_prefix,
|
70 |
+
"SfePy Prefix": sfepy_prefix,
|
71 |
+
"MegEngine Prefix": megengine_prefix,
|
72 |
+
"Main Evo Prefix": main_evo_prefix,
|
73 |
+
"SQLModel FFT": sqlmodel_fft,
|
74 |
+
"SfePy FFT": sfepy_fft,
|
75 |
+
"MegEngine FFT": megengine_fft,
|
76 |
+
"Main Evo FFT": main_evo_fft,
|
77 |
+
"Main FD FFT": main_fd_fft,
|
78 |
+
"LangChain Prefix": langchain_prefix,
|
79 |
+
"LlamaIndex Prefix": llamaindex_prefix,
|
80 |
+
"DSpy Prefix": dspy_prefix,
|
81 |
+
"CS Evo Prefix": cs_evo_prefix,
|
82 |
+
}
|
83 |
|
|
|
|
|
|
|
84 |
|
85 |
FIM_PREFIX = "<fim_prefix>"
|
86 |
FIM_MIDDLE = "<fim_middle>"
|
|
|
142 |
],
|
143 |
)
|
144 |
|
145 |
+
def stream(model, code, generate_kwargs):
|
146 |
+
input_ids = tokenizer(code, return_tensors="pt").to("cuda")
|
147 |
+
generated_ids = model.generate(**input_ids, **generate_kwargs)
|
148 |
+
return tokenizer.decode(generated_ids[0][input_ids["input_ids"].shape[1]:], skip_special_tokens=True).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
def generate(
|
151 |
+
prompt, temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, library="LangChain", method="Prefix"
|
152 |
):
|
153 |
|
154 |
temperature = float(temperature)
|
155 |
if temperature < 1e-2:
|
156 |
temperature = 1e-2
|
157 |
top_p = float(top_p)
|
|
|
158 |
|
159 |
generate_kwargs = dict(
|
160 |
temperature=temperature,
|
|
|
165 |
seed=42,
|
166 |
)
|
167 |
|
168 |
+
if method == "Base":
|
169 |
+
output = stream(basemodel, prompt, generate_kwargs)
|
170 |
+
elif method == "Prefix":
|
171 |
+
output = stream(model_map[library + " Prefix"], prompt, generate_kwargs)
|
172 |
+
elif method == "Evo Prefix" and library in ["SQLModel", "SfePy", "MegEngine"]:
|
173 |
+
output = stream(model_map["Main Evo Prefix"], prompt, generate_kwargs)
|
174 |
+
elif method == "FFT" and library in ["SQLModel", "SfePy", "MegEngine"]:
|
175 |
+
output = stream(model_map[library + " FFT"], prompt, generate_kwargs)
|
176 |
+
elif method == "Evo FFT" and library in ["SQLModel", "SfePy", "MegEngine"]:
|
177 |
+
output = stream(model_map["Main Evo FFT"], prompt, generate_kwargs)
|
178 |
+
elif method == "Full Data FFT" and library in ["SQLModel", "SfePy", "MegEngine"]:
|
179 |
+
output = stream(model_map["Main FD FFT"], prompt, generate_kwargs)
|
180 |
else:
|
181 |
+
output = ""
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
return output
|
184 |
|
185 |
|
|
|
211 |
|
212 |
description = """
|
213 |
<div style="text-align: center;">
|
214 |
+
<h1> 🌙 LUNA Models Playground</h1>
|
215 |
</div>
|
216 |
<div style="text-align: left;">
|
217 |
+
<p>This is a demo to generate text and code with unknown libraries. The supported based model is <a href="https://huggingface.co/Salesforce/codegen-350M-mono" style='color: #e6b800;'>CodeGen-350M-mono</a></p>
|
218 |
+
<p>The supported libraries are:</p>
|
219 |
<ul>
|
220 |
+
<li><a href="https://sqlmodel.tiangolo.com" style='color: #e6b800;'>SQLModel</a></li>
|
221 |
+
<li><a href="https://sfepy.org" style='color: #e6b800;'>SfePy</a></li>
|
222 |
+
<li><a href="https://megengine.org" style='color: #e6b800;'>MegEngine</a></li>
|
223 |
+
<li><a href="https://www.langchain.com/" style='color: #e6b800;'>LangChain</a></li>
|
224 |
+
<li><a href="https://www.llamaindex.ai/" style='color: #e6b800;'>LlamaIndex</a></li>
|
225 |
+
<li><a href="https://dspy-docs.vercel.app/" style='color: #e6b800;'>DSpy</a></li>
|
226 |
</ul>
|
227 |
+
<p><b>Please note:</b> These models are not designed for instruction purposes.</p>
|
228 |
</div>
|
229 |
"""
|
230 |
disclaimer = """⚠️<b>Any use or sharing of this demo constitues your acceptance of the BigCode [OpenRAIL-M](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) License Agreement and the use restrictions included within.</b>\
|
|
|
234 |
with gr.Column():
|
235 |
gr.Markdown(description)
|
236 |
with gr.Row():
|
237 |
+
library = gr.Dropdown(
|
238 |
+
["SQLModel", "SfePy", "MegEngine", "LangChain", "LlamaIndex", "DSpy"],
|
239 |
+
value="LangChain",
|
240 |
+
label="Library",
|
241 |
+
info="Choose a library from the list",
|
242 |
+
)
|
243 |
+
with gr.Row():
|
244 |
+
method = gr.Dropdown(
|
245 |
+
["Base", "Prefix", "Evo Prefix", "FFT", "Evo FFT", "Full Data FFT"],
|
246 |
+
value="Prefix",
|
247 |
label="Model",
|
248 |
+
info="Choose an expert from the list",
|
249 |
)
|
250 |
with gr.Row():
|
251 |
with gr.Column():
|
|
|
319 |
|
320 |
submit.click(
|
321 |
generate,
|
322 |
+
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, library, method],
|
323 |
outputs=[output],
|
324 |
+
concurrency_limit=16
|
325 |
)
|
326 |
+
share_button.click(None, [], [])
|
327 |
+
demo.queue().launch(debug=True)
|