luqmanabban commited on
Commit
57605a4
·
verified ·
1 Parent(s): a4d0438

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pickle
3
+ import pandas as pd
4
+ import joblib
5
+ from tensorflow.keras.models import load_model
6
+
7
+
8
+ # Load your pre-trained model
9
+ model = load_model('/content/best_model.h5')
10
+ # Define the prediction function
11
+ def predict(age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome):
12
+ # Define the expected input order and preprocess accordingly
13
+ columns = [
14
+ 'age', 'job', 'marital', 'education', 'default', 'balance', 'housing',
15
+ 'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays',
16
+ 'previous', 'poutcome'
17
+ ]
18
+
19
+ # Prepare the input values
20
+ data = [
21
+ age, job, marital, education, default, balance, housing, loan,
22
+ contact, day, month, duration, campaign, pdays, previous, poutcome
23
+ ]
24
+
25
+ # Convert to DataFrame
26
+ df = pd.DataFrame([data], columns=columns)
27
+
28
+ # Preprocess: One-hot encode categorical features (simulating as example)
29
+ # Normally, ensure you replicate the preprocessing steps used during training
30
+ df_processed = pd.get_dummies(df)
31
+
32
+ # Align processed DataFrame with model input (add missing columns if any)
33
+ model_columns = model.feature_names_in_ # Assuming the model has this attribute
34
+ for col in model_columns:
35
+ if col not in df_processed:
36
+ df_processed[col] = 0
37
+
38
+ df_processed = df_processed[model_columns]
39
+
40
+ # Predict
41
+ prediction = model.predict(df_processed)[0]
42
+
43
+ return "Yes" if prediction == 1 else "No"
44
+
45
+ # Define Gradio interface
46
+ inputs = [
47
+ gr.Number(label="Age"),
48
+ gr.Dropdown(['management', 'technician', 'entrepreneur', 'blue-collar', 'unknown', 'retired', 'admin.', 'services', 'self-employed', 'unemployed', 'student', 'housemaid'], label="Job"),
49
+ gr.Dropdown(['married', 'single', 'divorced'], label="Marital Status"),
50
+ gr.Dropdown(['primary', 'secondary', 'tertiary', 'unknown'], label="Education"),
51
+ gr.Dropdown(['yes', 'no'], label="Default"),
52
+ gr.Number(label="Balance"),
53
+ gr.Dropdown(['yes', 'no'], label="Housing Loan"),
54
+ gr.Dropdown(['yes', 'no'], label="Personal Loan"),
55
+ gr.Dropdown(['unknown', 'telephone', 'cellular'], label="Contact"),
56
+ gr.Number(label="Day"),
57
+ gr.Dropdown(['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], label="Month"),
58
+ gr.Number(label="Duration"),
59
+ gr.Number(label="Campaign"),
60
+ gr.Number(label="Pdays"),
61
+ gr.Number(label="Previous"),
62
+ gr.Dropdown(['unknown', 'other', 'failure', 'success'], label="Poutcome")
63
+ ]
64
+
65
+
66
+ output = gr.Textbox(label="Subscription Prediction")
67
+
68
+ gui = gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Term Deposit Subscription Prediction")
69
+
70
+ gui.launch()