import gradio as gr import pickle import pandas as pd import joblib from tensorflow.keras.models import load_model # Load your pre-trained model model = load_model('/content/best_model.h5') # Define the prediction function def predict(age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome): # Define the expected input order and preprocess accordingly columns = [ 'age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome' ] # Prepare the input values data = [ age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome ] # Convert to DataFrame df = pd.DataFrame([data], columns=columns) # Preprocess: One-hot encode categorical features (simulating as example) # Normally, ensure you replicate the preprocessing steps used during training df_processed = pd.get_dummies(df) # Align processed DataFrame with model input (add missing columns if any) model_columns = model.feature_names_in_ # Assuming the model has this attribute for col in model_columns: if col not in df_processed: df_processed[col] = 0 df_processed = df_processed[model_columns] # Predict prediction = model.predict(df_processed)[0] return "Yes" if prediction == 1 else "No" # Define Gradio interface inputs = [ gr.Number(label="Age"), gr.Dropdown(['management', 'technician', 'entrepreneur', 'blue-collar', 'unknown', 'retired', 'admin.', 'services', 'self-employed', 'unemployed', 'student', 'housemaid'], label="Job"), gr.Dropdown(['married', 'single', 'divorced'], label="Marital Status"), gr.Dropdown(['primary', 'secondary', 'tertiary', 'unknown'], label="Education"), gr.Dropdown(['yes', 'no'], label="Default"), gr.Number(label="Balance"), gr.Dropdown(['yes', 'no'], label="Housing Loan"), gr.Dropdown(['yes', 'no'], label="Personal Loan"), gr.Dropdown(['unknown', 'telephone', 'cellular'], label="Contact"), gr.Number(label="Day"), gr.Dropdown(['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], label="Month"), gr.Number(label="Duration"), gr.Number(label="Campaign"), gr.Number(label="Pdays"), gr.Number(label="Previous"), gr.Dropdown(['unknown', 'other', 'failure', 'success'], label="Poutcome") ] output = gr.Textbox(label="Subscription Prediction") gui = gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Term Deposit Subscription Prediction") gui.launch()