Spaces:
Configuration error
Configuration error
File size: 3,055 Bytes
4efbc62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023
import numpy as np
import torch
import torch.nn as nn
from efficientvit.apps.trainer.run_config import Scheduler
from efficientvit.models.nn.ops import IdentityLayer, ResidualBlock
from efficientvit.models.utils import build_kwargs_from_config
__all__ = ["apply_drop_func"]
def apply_drop_func(network: nn.Module, drop_config: dict[str, any] or None) -> None:
if drop_config is None:
return
drop_lookup_table = {
"droppath": apply_droppath,
}
drop_func = drop_lookup_table[drop_config["name"]]
drop_kwargs = build_kwargs_from_config(drop_config, drop_func)
drop_func(network, **drop_kwargs)
def apply_droppath(
network: nn.Module,
drop_prob: float,
linear_decay=True,
scheduled=True,
skip=0,
) -> None:
all_valid_blocks = []
for m in network.modules():
for name, sub_module in m.named_children():
if isinstance(sub_module, ResidualBlock) and isinstance(
sub_module.shortcut, IdentityLayer
):
all_valid_blocks.append((m, name, sub_module))
all_valid_blocks = all_valid_blocks[skip:]
for i, (m, name, sub_module) in enumerate(all_valid_blocks):
prob = (
drop_prob * (i + 1) / len(all_valid_blocks) if linear_decay else drop_prob
)
new_module = DropPathResidualBlock(
sub_module.main,
sub_module.shortcut,
sub_module.post_act,
sub_module.pre_norm,
prob,
scheduled,
)
m._modules[name] = new_module
class DropPathResidualBlock(ResidualBlock):
def __init__(
self,
main: nn.Module,
shortcut: nn.Module or None,
post_act=None,
pre_norm: nn.Module or None = None,
######################################
drop_prob: float = 0,
scheduled=True,
):
super().__init__(main, shortcut, post_act, pre_norm)
self.drop_prob = drop_prob
self.scheduled = scheduled
def forward(self, x: torch.Tensor) -> torch.Tensor:
if (
not self.training
or self.drop_prob == 0
or not isinstance(self.shortcut, IdentityLayer)
):
return ResidualBlock.forward(self, x)
else:
drop_prob = self.drop_prob
if self.scheduled:
drop_prob *= np.clip(Scheduler.PROGRESS, 0, 1)
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device
)
random_tensor.floor_() # binarize
res = self.forward_main(x) / keep_prob * random_tensor + self.shortcut(x)
if self.post_act:
res = self.post_act(res)
return res
|