Spaces:
Configuration error
Configuration error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import torch | |
import torch.nn as nn | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from efficientvit.models.utils import build_kwargs_from_config | |
__all__ = ["LayerNorm2d", "build_norm", "reset_bn", "set_norm_eps"] | |
class LayerNorm2d(nn.LayerNorm): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
out = x - torch.mean(x, dim=1, keepdim=True) | |
out = out / torch.sqrt(torch.square(out).mean(dim=1, keepdim=True) + self.eps) | |
if self.elementwise_affine: | |
out = out * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1) | |
return out | |
# register normalization function here | |
REGISTERED_NORM_DICT: dict[str, type] = { | |
"bn2d": nn.BatchNorm2d, | |
"ln": nn.LayerNorm, | |
"ln2d": LayerNorm2d, | |
} | |
def build_norm(name="bn2d", num_features=None, **kwargs) -> nn.Module or None: | |
if name in ["ln", "ln2d"]: | |
kwargs["normalized_shape"] = num_features | |
else: | |
kwargs["num_features"] = num_features | |
if name in REGISTERED_NORM_DICT: | |
norm_cls = REGISTERED_NORM_DICT[name] | |
args = build_kwargs_from_config(kwargs, norm_cls) | |
return norm_cls(**args) | |
else: | |
return None | |
def reset_bn( | |
model: nn.Module, | |
data_loader: list, | |
sync=True, | |
progress_bar=False, | |
) -> None: | |
import copy | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
from efficientvit.apps.utils import AverageMeter, is_master, sync_tensor | |
from efficientvit.models.utils import get_device, list_join | |
bn_mean = {} | |
bn_var = {} | |
tmp_model = copy.deepcopy(model) | |
for name, m in tmp_model.named_modules(): | |
if isinstance(m, _BatchNorm): | |
bn_mean[name] = AverageMeter(is_distributed=False) | |
bn_var[name] = AverageMeter(is_distributed=False) | |
def new_forward(bn, mean_est, var_est): | |
def lambda_forward(x): | |
x = x.contiguous() | |
if sync: | |
batch_mean = ( | |
x.mean(0, keepdim=True) | |
.mean(2, keepdim=True) | |
.mean(3, keepdim=True) | |
) # 1, C, 1, 1 | |
batch_mean = sync_tensor(batch_mean, reduce="cat") | |
batch_mean = torch.mean(batch_mean, dim=0, keepdim=True) | |
batch_var = (x - batch_mean) * (x - batch_mean) | |
batch_var = ( | |
batch_var.mean(0, keepdim=True) | |
.mean(2, keepdim=True) | |
.mean(3, keepdim=True) | |
) | |
batch_var = sync_tensor(batch_var, reduce="cat") | |
batch_var = torch.mean(batch_var, dim=0, keepdim=True) | |
else: | |
batch_mean = ( | |
x.mean(0, keepdim=True) | |
.mean(2, keepdim=True) | |
.mean(3, keepdim=True) | |
) # 1, C, 1, 1 | |
batch_var = (x - batch_mean) * (x - batch_mean) | |
batch_var = ( | |
batch_var.mean(0, keepdim=True) | |
.mean(2, keepdim=True) | |
.mean(3, keepdim=True) | |
) | |
batch_mean = torch.squeeze(batch_mean) | |
batch_var = torch.squeeze(batch_var) | |
mean_est.update(batch_mean.data, x.size(0)) | |
var_est.update(batch_var.data, x.size(0)) | |
# bn forward using calculated mean & var | |
_feature_dim = batch_mean.shape[0] | |
return F.batch_norm( | |
x, | |
batch_mean, | |
batch_var, | |
bn.weight[:_feature_dim], | |
bn.bias[:_feature_dim], | |
False, | |
0.0, | |
bn.eps, | |
) | |
return lambda_forward | |
m.forward = new_forward(m, bn_mean[name], bn_var[name]) | |
# skip if there is no batch normalization layers in the network | |
if len(bn_mean) == 0: | |
return | |
tmp_model.eval() | |
with torch.no_grad(): | |
with tqdm( | |
total=len(data_loader), | |
desc="reset bn", | |
disable=not progress_bar or not is_master(), | |
) as t: | |
for images in data_loader: | |
images = images.to(get_device(tmp_model)) | |
tmp_model(images) | |
t.set_postfix( | |
{ | |
"bs": images.size(0), | |
"res": list_join(images.shape[-2:], "x"), | |
} | |
) | |
t.update() | |
for name, m in model.named_modules(): | |
if name in bn_mean and bn_mean[name].count > 0: | |
feature_dim = bn_mean[name].avg.size(0) | |
assert isinstance(m, _BatchNorm) | |
m.running_mean.data[:feature_dim].copy_(bn_mean[name].avg) | |
m.running_var.data[:feature_dim].copy_(bn_var[name].avg) | |
def set_norm_eps(model: nn.Module, eps: float or None = None) -> None: | |
for m in model.modules(): | |
if isinstance(m, (nn.GroupNorm, nn.LayerNorm, _BatchNorm)): | |
if eps is not None: | |
m.eps = eps | |