luxmorocco's picture
Upload 84 files
108b1ba verified
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from efficientvit.models.nn.act import build_act
from efficientvit.models.nn.norm import build_norm
from efficientvit.models.utils import (get_same_padding, list_sum, resize,
val2list, val2tuple)
__all__ = [
"ConvLayer",
"UpSampleLayer",
"LinearLayer",
"IdentityLayer",
"DSConv",
"MBConv",
"FusedMBConv",
"ResBlock",
"LiteMLA",
"EfficientViTBlock",
"ResidualBlock",
"DAGBlock",
"OpSequential",
]
#################################################################################
# Basic Layers #
#################################################################################
class ConvLayer(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
use_bias=False,
dropout=0,
norm="bn2d",
act_func="relu",
):
super(ConvLayer, self).__init__()
padding = get_same_padding(kernel_size)
padding *= dilation
self.dropout = nn.Dropout2d(dropout, inplace=False) if dropout > 0 else None
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=(kernel_size, kernel_size),
stride=(stride, stride),
padding=padding,
dilation=(dilation, dilation),
groups=groups,
bias=use_bias,
)
self.norm = build_norm(norm, num_features=out_channels)
self.act = build_act(act_func)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.dropout is not None:
x = self.dropout(x)
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class UpSampleLayer(nn.Module):
def __init__(
self,
mode="bicubic",
size: int or tuple[int, int] or list[int] or None = None,
factor=2,
align_corners=False,
):
super(UpSampleLayer, self).__init__()
self.mode = mode
self.size = val2list(size, 2) if size is not None else None
self.factor = None if self.size is not None else factor
self.align_corners = align_corners
def forward(self, x: torch.Tensor) -> torch.Tensor:
if (
self.size is not None and tuple(x.shape[-2:]) == self.size
) or self.factor == 1:
return x
return resize(x, self.size, self.factor, self.mode, self.align_corners)
class LinearLayer(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
use_bias=True,
dropout=0,
norm=None,
act_func=None,
):
super(LinearLayer, self).__init__()
self.dropout = nn.Dropout(dropout, inplace=False) if dropout > 0 else None
self.linear = nn.Linear(in_features, out_features, use_bias)
self.norm = build_norm(norm, num_features=out_features)
self.act = build_act(act_func)
def _try_squeeze(self, x: torch.Tensor) -> torch.Tensor:
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self._try_squeeze(x)
if self.dropout:
x = self.dropout(x)
x = self.linear(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class IdentityLayer(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x
#################################################################################
# Basic Blocks #
#################################################################################
class DSConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3,
stride=1,
use_bias=False,
norm=("bn2d", "bn2d"),
act_func=("relu6", None),
):
super(DSConv, self).__init__()
use_bias = val2tuple(use_bias, 2)
norm = val2tuple(norm, 2)
act_func = val2tuple(act_func, 2)
self.depth_conv = ConvLayer(
in_channels,
in_channels,
kernel_size,
stride,
groups=in_channels,
norm=norm[0],
act_func=act_func[0],
use_bias=use_bias[0],
)
self.point_conv = ConvLayer(
in_channels,
out_channels,
1,
norm=norm[1],
act_func=act_func[1],
use_bias=use_bias[1],
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.depth_conv(x)
x = self.point_conv(x)
return x
class MBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3,
stride=1,
mid_channels=None,
expand_ratio=6,
use_bias=False,
norm=("bn2d", "bn2d", "bn2d"),
act_func=("relu6", "relu6", None),
):
super(MBConv, self).__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act_func = val2tuple(act_func, 3)
mid_channels = mid_channels or round(in_channels * expand_ratio)
self.inverted_conv = ConvLayer(
in_channels,
mid_channels,
1,
stride=1,
norm=norm[0],
act_func=act_func[0],
use_bias=use_bias[0],
)
self.depth_conv = ConvLayer(
mid_channels,
mid_channels,
kernel_size,
stride=stride,
groups=mid_channels,
norm=norm[1],
act_func=act_func[1],
use_bias=use_bias[1],
)
self.point_conv = ConvLayer(
mid_channels,
out_channels,
1,
norm=norm[2],
act_func=act_func[2],
use_bias=use_bias[2],
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.inverted_conv(x)
x = self.depth_conv(x)
x = self.point_conv(x)
return x
class FusedMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3,
stride=1,
mid_channels=None,
expand_ratio=6,
groups=1,
use_bias=False,
norm=("bn2d", "bn2d"),
act_func=("relu6", None),
):
super().__init__()
use_bias = val2tuple(use_bias, 2)
norm = val2tuple(norm, 2)
act_func = val2tuple(act_func, 2)
mid_channels = mid_channels or round(in_channels * expand_ratio)
self.spatial_conv = ConvLayer(
in_channels,
mid_channels,
kernel_size,
stride,
groups=groups,
use_bias=use_bias[0],
norm=norm[0],
act_func=act_func[0],
)
self.point_conv = ConvLayer(
mid_channels,
out_channels,
1,
use_bias=use_bias[1],
norm=norm[1],
act_func=act_func[1],
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.spatial_conv(x)
x = self.point_conv(x)
return x
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3,
stride=1,
mid_channels=None,
expand_ratio=1,
use_bias=False,
norm=("bn2d", "bn2d"),
act_func=("relu6", None),
):
super().__init__()
use_bias = val2tuple(use_bias, 2)
norm = val2tuple(norm, 2)
act_func = val2tuple(act_func, 2)
mid_channels = mid_channels or round(in_channels * expand_ratio)
self.conv1 = ConvLayer(
in_channels,
mid_channels,
kernel_size,
stride,
use_bias=use_bias[0],
norm=norm[0],
act_func=act_func[0],
)
self.conv2 = ConvLayer(
mid_channels,
out_channels,
kernel_size,
1,
use_bias=use_bias[1],
norm=norm[1],
act_func=act_func[1],
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv1(x)
x = self.conv2(x)
return x
class LiteMLA(nn.Module):
r"""Lightweight multi-scale linear attention"""
def __init__(
self,
in_channels: int,
out_channels: int,
heads: int or None = None,
heads_ratio: float = 1.0,
dim=8,
use_bias=False,
norm=(None, "bn2d"),
act_func=(None, None),
kernel_func="relu",
scales: tuple[int, ...] = (5,),
eps=1.0e-15,
):
super(LiteMLA, self).__init__()
self.eps = eps
heads = heads or int(in_channels // dim * heads_ratio)
total_dim = heads * dim
use_bias = val2tuple(use_bias, 2)
norm = val2tuple(norm, 2)
act_func = val2tuple(act_func, 2)
self.dim = dim
self.qkv = ConvLayer(
in_channels,
3 * total_dim,
1,
use_bias=use_bias[0],
norm=norm[0],
act_func=act_func[0],
)
self.aggreg = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(
3 * total_dim,
3 * total_dim,
scale,
padding=get_same_padding(scale),
groups=3 * total_dim,
bias=use_bias[0],
),
nn.Conv2d(
3 * total_dim,
3 * total_dim,
1,
groups=3 * heads,
bias=use_bias[0],
),
)
for scale in scales
]
)
self.kernel_func = build_act(kernel_func, inplace=False)
self.proj = ConvLayer(
total_dim * (1 + len(scales)),
out_channels,
1,
use_bias=use_bias[1],
norm=norm[1],
act_func=act_func[1],
)
@autocast(enabled=False)
def relu_linear_att(self, qkv: torch.Tensor) -> torch.Tensor:
B, _, H, W = list(qkv.size())
if qkv.dtype == torch.float16:
qkv = qkv.float()
qkv = torch.reshape(
qkv,
(
B,
-1,
3 * self.dim,
H * W,
),
)
qkv = torch.transpose(qkv, -1, -2)
q, k, v = (
qkv[..., 0 : self.dim],
qkv[..., self.dim : 2 * self.dim],
qkv[..., 2 * self.dim :],
)
# lightweight linear attention
q = self.kernel_func(q)
k = self.kernel_func(k)
# linear matmul
trans_k = k.transpose(-1, -2)
v = F.pad(v, (0, 1), mode="constant", value=1)
kv = torch.matmul(trans_k, v)
out = torch.matmul(q, kv)
out = out[..., :-1] / (out[..., -1:] + self.eps)
out = torch.transpose(out, -1, -2)
out = torch.reshape(out, (B, -1, H, W))
return out
def forward(self, x: torch.Tensor) -> torch.Tensor:
# generate multi-scale q, k, v
qkv = self.qkv(x)
multi_scale_qkv = [qkv]
for op in self.aggreg:
multi_scale_qkv.append(op(qkv))
multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1)
out = self.relu_linear_att(multi_scale_qkv)
out = self.proj(out)
return out
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
heads_ratio: float = 1.0,
dim=32,
expand_ratio: float = 4,
scales=(5,),
norm="bn2d",
act_func="hswish",
):
super(EfficientViTBlock, self).__init__()
self.context_module = ResidualBlock(
LiteMLA(
in_channels=in_channels,
out_channels=in_channels,
heads_ratio=heads_ratio,
dim=dim,
norm=(None, norm),
scales=scales,
),
IdentityLayer(),
)
local_module = MBConv(
in_channels=in_channels,
out_channels=in_channels,
expand_ratio=expand_ratio,
use_bias=(True, True, False),
norm=(None, None, norm),
act_func=(act_func, act_func, None),
)
self.local_module = ResidualBlock(local_module, IdentityLayer())
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.context_module(x)
x = self.local_module(x)
return x
#################################################################################
# Functional Blocks #
#################################################################################
class ResidualBlock(nn.Module):
def __init__(
self,
main: nn.Module or None,
shortcut: nn.Module or None,
post_act=None,
pre_norm: nn.Module or None = None,
):
super(ResidualBlock, self).__init__()
self.pre_norm = pre_norm
self.main = main
self.shortcut = shortcut
self.post_act = build_act(post_act)
def forward_main(self, x: torch.Tensor) -> torch.Tensor:
if self.pre_norm is None:
return self.main(x)
else:
return self.main(self.pre_norm(x))
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.main is None:
res = x
elif self.shortcut is None:
res = self.forward_main(x)
else:
res = self.forward_main(x) + self.shortcut(x)
if self.post_act:
res = self.post_act(res)
return res
class DAGBlock(nn.Module):
def __init__(
self,
inputs: dict[str, nn.Module],
merge: str,
post_input: nn.Module or None,
middle: nn.Module,
outputs: dict[str, nn.Module],
):
super(DAGBlock, self).__init__()
self.input_keys = list(inputs.keys())
self.input_ops = nn.ModuleList(list(inputs.values()))
self.merge = merge
self.post_input = post_input
self.middle = middle
self.output_keys = list(outputs.keys())
self.output_ops = nn.ModuleList(list(outputs.values()))
def forward(self, feature_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
feat = [
op(feature_dict[key]) for key, op in zip(self.input_keys, self.input_ops)
]
if self.merge == "add":
feat = list_sum(feat)
elif self.merge == "cat":
feat = torch.concat(feat, dim=1)
else:
raise NotImplementedError
if self.post_input is not None:
feat = self.post_input(feat)
feat = self.middle(feat)
for key, op in zip(self.output_keys, self.output_ops):
feature_dict[key] = op(feat)
return feature_dict
class OpSequential(nn.Module):
def __init__(self, op_list: list[nn.Module or None]):
super(OpSequential, self).__init__()
valid_op_list = []
for op in op_list:
if op is not None:
valid_op_list.append(op)
self.op_list = nn.ModuleList(valid_op_list)
def forward(self, x: torch.Tensor) -> torch.Tensor:
for op in self.op_list:
x = op(x)
return x