luxmorocco's picture
Upload 86 files
4efbc62 verified
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023
import os
import time
from copy import deepcopy
import torch.backends.cudnn
import torch.distributed
import torch.nn as nn
from efficientvit.apps.data_provider import DataProvider
from efficientvit.apps.trainer.run_config import RunConfig
from efficientvit.apps.utils import (dist_init, dump_config,
get_dist_local_rank, get_dist_rank,
get_dist_size, init_modules, is_master,
load_config, partial_update_config,
zero_last_gamma)
from efficientvit.models.utils import (build_kwargs_from_config,
load_state_dict_from_file)
__all__ = [
"save_exp_config",
"setup_dist_env",
"setup_seed",
"setup_exp_config",
"setup_data_provider",
"setup_run_config",
"init_model",
]
def save_exp_config(exp_config: dict, path: str, name="config.yaml") -> None:
if not is_master():
return
dump_config(exp_config, os.path.join(path, name))
def setup_dist_env(gpu: str or None = None) -> None:
if gpu is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
if not torch.distributed.is_initialized():
dist_init()
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(get_dist_local_rank())
def setup_seed(manual_seed: int, resume: bool) -> None:
if resume:
manual_seed = int(time.time())
manual_seed = get_dist_rank() + manual_seed
torch.manual_seed(manual_seed)
torch.cuda.manual_seed_all(manual_seed)
def setup_exp_config(
config_path: str, recursive=True, opt_args: dict or None = None
) -> dict:
# load config
if not os.path.isfile(config_path):
raise ValueError(config_path)
fpaths = [config_path]
if recursive:
extension = os.path.splitext(config_path)[1]
while os.path.dirname(config_path) != config_path:
config_path = os.path.dirname(config_path)
fpath = os.path.join(config_path, "default" + extension)
if os.path.isfile(fpath):
fpaths.append(fpath)
fpaths = fpaths[::-1]
default_config = load_config(fpaths[0])
exp_config = deepcopy(default_config)
for fpath in fpaths[1:]:
partial_update_config(exp_config, load_config(fpath))
# update config via args
if opt_args is not None:
partial_update_config(exp_config, opt_args)
return exp_config
def setup_data_provider(
exp_config: dict,
data_provider_classes: list[type[DataProvider]],
is_distributed: bool = True,
) -> DataProvider:
dp_config = exp_config["data_provider"]
dp_config["num_replicas"] = get_dist_size() if is_distributed else None
dp_config["rank"] = get_dist_rank() if is_distributed else None
dp_config["test_batch_size"] = (
dp_config.get("test_batch_size", None) or dp_config["base_batch_size"] * 2
)
dp_config["batch_size"] = dp_config["train_batch_size"] = dp_config[
"base_batch_size"
]
data_provider_lookup = {
provider.name: provider for provider in data_provider_classes
}
data_provider_class = data_provider_lookup[dp_config["dataset"]]
data_provider_kwargs = build_kwargs_from_config(dp_config, data_provider_class)
data_provider = data_provider_class(**data_provider_kwargs)
return data_provider
def setup_run_config(exp_config: dict, run_config_cls: type[RunConfig]) -> RunConfig:
exp_config["run_config"]["init_lr"] = (
exp_config["run_config"]["base_lr"] * get_dist_size()
)
run_config = run_config_cls(**exp_config["run_config"])
return run_config
def init_model(
network: nn.Module,
init_from: str or None = None,
backbone_init_from: str or None = None,
rand_init="trunc_normal",
last_gamma=None,
) -> None:
# initialization
init_modules(network, init_type=rand_init)
# zero gamma of last bn in each block
if last_gamma is not None:
zero_last_gamma(network, last_gamma)
# load weight
if init_from is not None and os.path.isfile(init_from):
network.load_state_dict(load_state_dict_from_file(init_from))
print(f"Loaded init from {init_from}")
elif backbone_init_from is not None and os.path.isfile(backbone_init_from):
network.backbone.load_state_dict(load_state_dict_from_file(backbone_init_from))
print(f"Loaded backbone init from {backbone_init_from}")
else:
print(f"Random init ({rand_init}) with last gamma {last_gamma}")