# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 import os import torch import torch.distributed from efficientvit.models.utils.list import list_mean, list_sum __all__ = [ "dist_init", "get_dist_rank", "get_dist_size", "is_master", "dist_barrier", "get_dist_local_rank", "sync_tensor", ] def dist_init() -> None: try: torch.distributed.init_process_group(backend="nccl") assert torch.distributed.is_initialized() except Exception: # use torchpack from torchpack import distributed as dist dist.init() os.environ["RANK"] = f"{dist.rank()}" os.environ["WORLD_SIZE"] = f"{dist.size()}" os.environ["LOCAL_RANK"] = f"{dist.local_rank()}" def get_dist_rank() -> int: return int(os.environ["RANK"]) def get_dist_size() -> int: return int(os.environ["WORLD_SIZE"]) def is_master() -> bool: return get_dist_rank() == 0 def dist_barrier() -> None: torch.distributed.barrier() def get_dist_local_rank() -> int: return int(os.environ["LOCAL_RANK"]) def sync_tensor( tensor: torch.Tensor or float, reduce="mean" ) -> torch.Tensor or list[torch.Tensor]: if not isinstance(tensor, torch.Tensor): tensor = torch.Tensor(1).fill_(tensor).cuda() tensor_list = [torch.empty_like(tensor) for _ in range(get_dist_size())] torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False) if reduce == "mean": return list_mean(tensor_list) elif reduce == "sum": return list_sum(tensor_list) elif reduce == "cat": return torch.cat(tensor_list, dim=0) elif reduce == "root": return tensor_list[0] else: return tensor_list