# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 import math import torch from efficientvit.models.utils.list import val2list __all__ = ["CosineLRwithWarmup"] class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, warmup_steps: int, warmup_lr: float, decay_steps: int or list[int], last_epoch: int = -1, ) -> None: self.warmup_steps = warmup_steps self.warmup_lr = warmup_lr self.decay_steps = val2list(decay_steps) super().__init__(optimizer, last_epoch) def get_lr(self) -> list[float]: if self.last_epoch < self.warmup_steps: return [ (base_lr - self.warmup_lr) * (self.last_epoch + 1) / self.warmup_steps + self.warmup_lr for base_lr in self.base_lrs ] else: current_steps = self.last_epoch - self.warmup_steps decay_steps = [0] + self.decay_steps idx = len(decay_steps) - 2 for i, decay_step in enumerate(decay_steps[:-1]): if decay_step <= current_steps < decay_steps[i + 1]: idx = i break current_steps -= decay_steps[idx] decay_step = decay_steps[idx + 1] - decay_steps[idx] return [ 0.5 * base_lr * (1 + math.cos(math.pi * current_steps / decay_step)) for base_lr in self.base_lrs ]