# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 import torch from efficientvit.apps.utils.dist import sync_tensor __all__ = ["AverageMeter"] class AverageMeter: """Computes and stores the average and current value.""" def __init__(self, is_distributed=True): self.is_distributed = is_distributed self.sum = 0 self.count = 0 def _sync(self, val: torch.Tensor or int or float) -> torch.Tensor or int or float: return sync_tensor(val, reduce="sum") if self.is_distributed else val def update(self, val: torch.Tensor or int or float, delta_n=1): self.count += self._sync(delta_n) self.sum += self._sync(val * delta_n) def get_count(self) -> torch.Tensor or int or float: return ( self.count.item() if isinstance(self.count, torch.Tensor) and self.count.numel() == 1 else self.count ) @property def avg(self): avg = -1 if self.count == 0 else self.sum / self.count return avg.item() if isinstance(avg, torch.Tensor) and avg.numel() == 1 else avg