# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 import torch __all__ = ["REGISTERED_OPTIMIZER_DICT", "build_optimizer"] # register optimizer here # name: optimizer, kwargs with default values REGISTERED_OPTIMIZER_DICT: dict[str, tuple[type, dict[str, any]]] = { "sgd": (torch.optim.SGD, {"momentum": 0.9, "nesterov": True}), "adam": (torch.optim.Adam, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}), "adamw": ( torch.optim.AdamW, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}, ), } def build_optimizer( net_params, optimizer_name: str, optimizer_params: dict or None, init_lr: float ) -> torch.optim.Optimizer: optimizer_class, default_params = REGISTERED_OPTIMIZER_DICT[optimizer_name] optimizer_params = optimizer_params or {} for key in default_params: if key in optimizer_params: default_params[key] = optimizer_params[key] optimizer = optimizer_class(net_params, init_lr, **default_params) return optimizer