# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 from functools import partial import torch.nn as nn from efficientvit.models.utils import build_kwargs_from_config __all__ = ["build_act"] # register activation function here REGISTERED_ACT_DICT: dict[str, type] = { "relu": nn.ReLU, "relu6": nn.ReLU6, "hswish": nn.Hardswish, "silu": nn.SiLU, "gelu": partial(nn.GELU, approximate="tanh"), } def build_act(name: str, **kwargs) -> nn.Module or None: if name in REGISTERED_ACT_DICT: act_cls = REGISTERED_ACT_DICT[name] args = build_kwargs_from_config(kwargs, act_cls) return act_cls(**args) else: return None