# YOLO-World + EfficientViT SAM
🤗 [HuggingFace Space](https://huggingface.co/spaces/curt-park/yolo-world-with-efficientvit-sam)
![example_0](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/326bde19-d535-4be5-829e-782fce0c1d00)
## Prerequisites
This project is developed and tested on Python3.10.
```bash
# Create and activate a python 3.10 environment.
conda create -n yolo-world-with-efficientvit-sam python=3.10 -y
conda activate yolo-world-with-efficientvit-sam
# Setup packages.
make setup
```
## How to Run
```bash
python app.py
```
Open http://127.0.0.1:7860/ on your web browser.
![example_1](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9388e4ee-6f71-4428-b17c-d218fd059949)
## Core Components
### YOLO-World
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) is an open-vocabulary object detection model with high efficiency.
On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100,
which outperforms many state-of-the-art methods in terms of both accuracy and speed.
![image](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/8a4a17bd-918d-478a-8451-f58e4a2dce79)
### EfficientViT SAM
[EfficientViT SAM](https://github.com/mit-han-lab/efficientvit) is a new family of accelerated segment anything models.
Thanks to the lightweight and hardware-efficient core building block,
it delivers 48.9× measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance.
## Powered By
```
@misc{zhang2024efficientvitsam,
title={EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss},
author={Zhuoyang Zhang and Han Cai and Song Han},
year={2024},
eprint={2402.05008},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{cheng2024yolow,
title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
journal={arXiv preprint arXiv:2401.17270},
year={2024}
}
@article{cai2022efficientvit,
title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
author={Cai, Han and Gan, Chuang and Han, Song},
journal={arXiv preprint arXiv:2205.14756},
year={2022}
}
```