Spaces:
Sleeping
Sleeping
File size: 10,523 Bytes
57fe26d b0f3194 57fe26d b0f3194 57fe26d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import json
import io
from datetime import datetime
import os
def initialize_session_state():
"""Initialize session state variables"""
if "annotations" not in st.session_state:
st.session_state["annotations"] = []
if "current_tool" not in st.session_state:
st.session_state["current_tool"] = "rect"
if "annotation_history" not in st.session_state:
st.session_state["annotation_history"] = []
if "is_authenticated" not in st.session_state:
st.session_state["is_authenticated"] = False
def authenticate_user():
"""Handle user authentication"""
st.title("π₯ Alyse AI Prescription Annotation Tool")
if not st.session_state["is_authenticated"]:
with st.form("login_form"):
st.write("Please enter your credentials to access the tool.")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
submit = st.form_submit_button("Login")
if submit:
if username == "alyse" and password == "pharmacie":
st.session_state["is_authenticated"] = True
st.success("β
Access granted! You can now use the application.")
st.rerun()
else:
st.error("β Invalid credentials. Please try again.")
return False
return True
def create_sidebar_controls():
"""Create sidebar controls for annotation settings"""
st.sidebar.header("π Annotation Controls")
# Tool selection
tool_options = {
"rect": "Rectangle Box",
"line": "Line",
"circle": "Circle",
"freedraw": "Free Draw"
}
st.session_state["current_tool"] = st.sidebar.radio(
"Select Drawing Tool:",
options=list(tool_options.keys()),
format_func=lambda x: tool_options[x]
)
# Color selection
stroke_color = st.sidebar.color_picker("Stroke Color:", "#0000FF")
stroke_width = st.sidebar.slider("Stroke Width:", 1, 10, 2)
# Annotation categories
annotation_category = st.sidebar.selectbox(
"Annotation Category:",
["Medication Name", "Dosage", "Frequency", "Duration", "Patient Info", "Doctor Info", "Other"]
)
return stroke_color, stroke_width, annotation_category
def preprocess_image(image):
"""Resize image if too large for Streamlit Cloud"""
max_size = (800, 800) # Maximum dimensions
# Calculate aspect ratio
width_ratio = max_size[0] / image.size[0]
height_ratio = max_size[1] / image.size[1]
resize_ratio = min(width_ratio, height_ratio)
# Only resize if image is too large
if resize_ratio < 1:
new_size = (
int(image.size[0] * resize_ratio),
int(image.size[1] * resize_ratio)
)
return image.resize(new_size, Image.Resampling.LANCZOS)
return image
def handle_canvas_drawing(image, stroke_color, stroke_width, category):
"""Handle canvas drawing with preprocessed image"""
processed_image = preprocess_image(image)
canvas_result = st_canvas(
fill_color="rgba(0, 0, 0, 0)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_image=processed_image,
update_streamlit=True,
width=processed_image.size[0],
height=processed_image.size[1],
drawing_mode=st.session_state["current_tool"],
display_toolbar=True,
key="canvas",
)
if canvas_result.json_data:
objects = canvas_result.json_data.get("objects", [])
for obj in objects:
if obj not in [ann.get("object_data") for ann in st.session_state["annotations"]]:
new_annotation = {
"object_data": obj,
"category": category,
"text": "",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.session_state["annotations"].append(new_annotation)
st.session_state["annotation_history"].append(new_annotation)
def display_annotation_list():
"""Display and manage list of annotations"""
st.sidebar.subheader("π Current Annotations")
for i, annotation in enumerate(st.session_state["annotations"]):
with st.sidebar.expander(f"Annotation {i+1} - {annotation['category']}"):
# Update annotation text
new_text = st.text_area(
"Description:",
annotation["text"],
key=f"text_input_{i}"
)
st.session_state["annotations"][i]["text"] = new_text
# Display annotation details
st.write(f"Created: {annotation['timestamp']}")
# Delete individual annotation
if st.button("Delete", key=f"delete_{i}"):
st.session_state["annotations"].pop(i)
st.rerun()
def load_demo_image():
"""Load demo prescription image"""
demo_image_url = "/ordonnance-002.jpeg"
return Image.open(requests.get(demo_image_url, stream=True).raw).convert("RGB")
def save_annotations(image, uploaded_file):
"""Handle saving and downloading annotations"""
st.sidebar.subheader("πΎ Save & Export")
if st.sidebar.button("Save and Download"):
# Create annotated image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Draw annotations
for annotation in st.session_state["annotations"]:
obj = annotation["object_data"]
if obj["type"] == "rect":
draw.rectangle(
[obj["left"], obj["top"],
obj["left"] + obj["width"],
obj["top"] + obj["height"]],
outline=obj["stroke"],
width=int(obj["strokeWidth"])
)
# Add text label
draw.text(
(obj["left"], obj["top"] - 15),
f"{annotation['category']}: {annotation['text']}",
fill=obj["stroke"]
)
# Save files
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Save annotated image
img_buffer = io.BytesIO()
annotated_image.save(img_buffer, format="JPEG", quality=95)
img_buffer.seek(0)
# Save annotations JSON
annotations_data = {
"image_id": uploaded_file.name,
"timestamp": timestamp,
"annotations": [
{
"category": ann["category"],
"text": ann["text"],
"timestamp": ann["timestamp"],
"object_data": ann["object_data"]
}
for ann in st.session_state["annotations"]
]
}
# Convert JSON to string first, then to bytes
json_str = json.dumps(annotations_data, indent=2)
json_bytes = json_str.encode('utf-8')
json_buffer = io.BytesIO(json_bytes)
# Download buttons
col1, col2 = st.sidebar.columns(2)
with col1:
st.download_button(
"π· Download Image",
data=img_buffer,
file_name=f"annotated_{timestamp}.jpg",
mime="image/jpeg"
)
with col2:
st.download_button(
"π Download JSON",
data=json_buffer,
file_name=f"annotations_{timestamp}.json",
mime="application/json"
)
st.sidebar.success("β
Files saved successfully!")
def main():
"""Main application logic"""
initialize_session_state()
if not authenticate_user():
return
if st.button("π Load Demo Prescription"):
demo_image = load_demo_image()
uploaded_file = demo_image
st.success("Demo prescription loaded successfully!")
# File upload
uploaded_file = st.file_uploader(
"π€ Upload Prescription Image",
type=["jpg", "jpeg", "png"],
help="Upload a clear image of the prescription to annotate"
)
if uploaded_file:
# Load and display image
image = Image.open(uploaded_file).convert("RGB")
# Create two columns for layout
col1, col2 = st.columns([2, 1])
with col1:
# Get annotation settings
stroke_color, stroke_width, category = create_sidebar_controls()
# Handle canvas drawing
handle_canvas_drawing(image, stroke_color, stroke_width, category)
with col2:
# Undo/Redo buttons
col_undo, col_redo, col_clear = st.columns(3)
with col_undo:
if st.button("β©οΈ Undo") and st.session_state["annotations"]:
last_annotation = st.session_state["annotations"].pop()
st.session_state["annotation_history"].append(last_annotation)
with col_redo:
if st.button("βͺοΈ Redo") and st.session_state["annotation_history"]:
st.session_state["annotations"].append(
st.session_state["annotation_history"].pop()
)
with col_clear:
if st.button("ποΈ Clear All"):
st.session_state["annotations"] = []
st.session_state["annotation_history"] = []
# Display annotation list
display_annotation_list()
# Save and download options
save_annotations(image, uploaded_file)
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p><strong>Alyse AI Prescription Annotation Tool v2.0</strong></p>
<p>Created by: Jad Tounsi El Azzoiani and Amine Tahiri</p>
<p>Last Updated: November 2024</p>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
st.set_page_config(
page_title="Alyse AI Prescription Annotator",
page_icon="π₯",
layout="wide"
)
main() |