File size: 10,523 Bytes
57fe26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f3194
 
 
 
 
 
 
57fe26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f3194
 
 
 
 
57fe26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import json
import io
from datetime import datetime
import os

def initialize_session_state():
    """Initialize session state variables"""
    if "annotations" not in st.session_state:
        st.session_state["annotations"] = []
    if "current_tool" not in st.session_state:
        st.session_state["current_tool"] = "rect"
    if "annotation_history" not in st.session_state:
        st.session_state["annotation_history"] = []
    if "is_authenticated" not in st.session_state:
        st.session_state["is_authenticated"] = False

def authenticate_user():
    """Handle user authentication"""
    st.title("πŸ₯ Alyse AI Prescription Annotation Tool")
    
    if not st.session_state["is_authenticated"]:
        with st.form("login_form"):
            st.write("Please enter your credentials to access the tool.")
            username = st.text_input("Username:")
            password = st.text_input("Password:", type="password")
            submit = st.form_submit_button("Login")
            
            if submit:
                if username == "alyse" and password == "pharmacie":
                    st.session_state["is_authenticated"] = True
                    st.success("βœ… Access granted! You can now use the application.")
                    st.rerun()
                else:
                    st.error("❌ Invalid credentials. Please try again.")
        return False
    return True

def create_sidebar_controls():
    """Create sidebar controls for annotation settings"""
    st.sidebar.header("πŸ“‹ Annotation Controls")
    
    # Tool selection
    tool_options = {
        "rect": "Rectangle Box",
        "line": "Line",
        "circle": "Circle",
        "freedraw": "Free Draw"
    }
    st.session_state["current_tool"] = st.sidebar.radio(
        "Select Drawing Tool:",
        options=list(tool_options.keys()),
        format_func=lambda x: tool_options[x]
    )
    
    # Color selection
    stroke_color = st.sidebar.color_picker("Stroke Color:", "#0000FF")
    stroke_width = st.sidebar.slider("Stroke Width:", 1, 10, 2)
    
    # Annotation categories
    annotation_category = st.sidebar.selectbox(
        "Annotation Category:",
        ["Medication Name", "Dosage", "Frequency", "Duration", "Patient Info", "Doctor Info", "Other"]
    )
    
    return stroke_color, stroke_width, annotation_category

def preprocess_image(image):
    """Resize image if too large for Streamlit Cloud"""
    max_size = (800, 800)  # Maximum dimensions
    
    # Calculate aspect ratio
    width_ratio = max_size[0] / image.size[0]
    height_ratio = max_size[1] / image.size[1]
    resize_ratio = min(width_ratio, height_ratio)
    
    # Only resize if image is too large
    if resize_ratio < 1:
        new_size = (
            int(image.size[0] * resize_ratio),
            int(image.size[1] * resize_ratio)
        )
        return image.resize(new_size, Image.Resampling.LANCZOS)
    return image

def handle_canvas_drawing(image, stroke_color, stroke_width, category):
    """Handle canvas drawing with preprocessed image"""
    processed_image = preprocess_image(image)
    
    canvas_result = st_canvas(
        fill_color="rgba(0, 0, 0, 0)",
        stroke_width=stroke_width,
        stroke_color=stroke_color,
        background_image=processed_image,
        update_streamlit=True,
        width=processed_image.size[0],
        height=processed_image.size[1],
        drawing_mode=st.session_state["current_tool"],
        display_toolbar=True,
        key="canvas",
    )
    
    if canvas_result.json_data:
        objects = canvas_result.json_data.get("objects", [])
        for obj in objects:
            if obj not in [ann.get("object_data") for ann in st.session_state["annotations"]]:
                new_annotation = {
                    "object_data": obj,
                    "category": category,
                    "text": "",
                    "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
                }
                st.session_state["annotations"].append(new_annotation)
                st.session_state["annotation_history"].append(new_annotation)


def display_annotation_list():
    """Display and manage list of annotations"""
    st.sidebar.subheader("πŸ“ Current Annotations")
    
    for i, annotation in enumerate(st.session_state["annotations"]):
        with st.sidebar.expander(f"Annotation {i+1} - {annotation['category']}"):
            # Update annotation text
            new_text = st.text_area(
                "Description:",
                annotation["text"],
                key=f"text_input_{i}"
            )
            st.session_state["annotations"][i]["text"] = new_text
            
            # Display annotation details
            st.write(f"Created: {annotation['timestamp']}")
            
            # Delete individual annotation
            if st.button("Delete", key=f"delete_{i}"):
                st.session_state["annotations"].pop(i)
                st.rerun()


def load_demo_image():
    """Load demo prescription image"""
    demo_image_url = "/ordonnance-002.jpeg"
    return Image.open(requests.get(demo_image_url, stream=True).raw).convert("RGB")

def save_annotations(image, uploaded_file):
    """Handle saving and downloading annotations"""
    st.sidebar.subheader("πŸ’Ύ Save & Export")
    
    if st.sidebar.button("Save and Download"):
        # Create annotated image
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)
        
        # Draw annotations
        for annotation in st.session_state["annotations"]:
            obj = annotation["object_data"]
            if obj["type"] == "rect":
                draw.rectangle(
                    [obj["left"], obj["top"], 
                     obj["left"] + obj["width"], 
                     obj["top"] + obj["height"]],
                    outline=obj["stroke"],
                    width=int(obj["strokeWidth"])
                )
                # Add text label
                draw.text(
                    (obj["left"], obj["top"] - 15),
                    f"{annotation['category']}: {annotation['text']}",
                    fill=obj["stroke"]
                )
        
        # Save files
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        # Save annotated image
        img_buffer = io.BytesIO()
        annotated_image.save(img_buffer, format="JPEG", quality=95)
        img_buffer.seek(0)
        
        # Save annotations JSON
        annotations_data = {
            "image_id": uploaded_file.name,
            "timestamp": timestamp,
            "annotations": [
                {
                    "category": ann["category"],
                    "text": ann["text"],
                    "timestamp": ann["timestamp"],
                    "object_data": ann["object_data"]
                }
                for ann in st.session_state["annotations"]
            ]
        }
        
        # Convert JSON to string first, then to bytes
        json_str = json.dumps(annotations_data, indent=2)
        json_bytes = json_str.encode('utf-8')
        json_buffer = io.BytesIO(json_bytes)
        
        # Download buttons
        col1, col2 = st.sidebar.columns(2)
        with col1:
            st.download_button(
                "πŸ“· Download Image",
                data=img_buffer,
                file_name=f"annotated_{timestamp}.jpg",
                mime="image/jpeg"
            )
        with col2:
            st.download_button(
                "πŸ“„ Download JSON",
                data=json_buffer,
                file_name=f"annotations_{timestamp}.json",
                mime="application/json"
            )
        
        st.sidebar.success("βœ… Files saved successfully!")
def main():
    """Main application logic"""
    initialize_session_state()
    
    if not authenticate_user():
        return
        
    if st.button("πŸ“‹ Load Demo Prescription"):
        demo_image = load_demo_image()
        uploaded_file = demo_image
        st.success("Demo prescription loaded successfully!")
    
    # File upload
    uploaded_file = st.file_uploader(
        "πŸ“€ Upload Prescription Image",
        type=["jpg", "jpeg", "png"],
        help="Upload a clear image of the prescription to annotate"
    )
    
    if uploaded_file:
        # Load and display image
        image = Image.open(uploaded_file).convert("RGB")
        
        # Create two columns for layout
        col1, col2 = st.columns([2, 1])
        
        with col1:
            # Get annotation settings
            stroke_color, stroke_width, category = create_sidebar_controls()
            
            # Handle canvas drawing
            handle_canvas_drawing(image, stroke_color, stroke_width, category)
        
        with col2:
            # Undo/Redo buttons
            col_undo, col_redo, col_clear = st.columns(3)
            with col_undo:
                if st.button("↩️ Undo") and st.session_state["annotations"]:
                    last_annotation = st.session_state["annotations"].pop()
                    st.session_state["annotation_history"].append(last_annotation)
            
            with col_redo:
                if st.button("β†ͺ️ Redo") and st.session_state["annotation_history"]:
                    st.session_state["annotations"].append(
                        st.session_state["annotation_history"].pop()
                    )
            
            with col_clear:
                if st.button("πŸ—‘οΈ Clear All"):
                    st.session_state["annotations"] = []
                    st.session_state["annotation_history"] = []
        
        # Display annotation list
        display_annotation_list()
        
        # Save and download options
        save_annotations(image, uploaded_file)
    
    # Footer
    st.markdown("---")
    st.markdown(
        """
        <div style='text-align: center'>
            <p><strong>Alyse AI Prescription Annotation Tool v2.0</strong></p>
            <p>Created by: Jad Tounsi El Azzoiani and Amine Tahiri</p>
            <p>Last Updated: November 2024</p>
        </div>
        """,
        unsafe_allow_html=True
    )

if __name__ == "__main__":
    st.set_page_config(
        page_title="Alyse AI Prescription Annotator",
        page_icon="πŸ₯",
        layout="wide"
    )
    main()