import streamlit as st from streamlit_drawable_canvas import st_canvas from PIL import Image, ImageDraw, ImageFont import numpy as np import json import io from datetime import datetime import os def initialize_session_state(): """Initialize session state variables""" if "annotations" not in st.session_state: st.session_state["annotations"] = [] if "current_tool" not in st.session_state: st.session_state["current_tool"] = "rect" if "annotation_history" not in st.session_state: st.session_state["annotation_history"] = [] if "is_authenticated" not in st.session_state: st.session_state["is_authenticated"] = False def authenticate_user(): """Handle user authentication""" st.title("đŸĨ Alyse AI Prescription Annotation Tool") if not st.session_state["is_authenticated"]: with st.form("login_form"): st.write("Please enter your credentials to access the tool.") username = st.text_input("Username:") password = st.text_input("Password:", type="password") submit = st.form_submit_button("Login") if submit: if username == "alyse" and password == "pharmacie": st.session_state["is_authenticated"] = True st.success("✅ Access granted! You can now use the application.") st.rerun() else: st.error("❌ Invalid credentials. Please try again.") return False return True def create_sidebar_controls(): """Create sidebar controls for annotation settings""" st.sidebar.header("📋 Annotation Controls") # Tool selection tool_options = { "rect": "Rectangle Box", "line": "Line", "circle": "Circle", "freedraw": "Free Draw" } st.session_state["current_tool"] = st.sidebar.radio( "Select Drawing Tool:", options=list(tool_options.keys()), format_func=lambda x: tool_options[x] ) # Color selection stroke_color = st.sidebar.color_picker("Stroke Color:", "#0000FF") stroke_width = st.sidebar.slider("Stroke Width:", 1, 10, 2) # Annotation categories annotation_category = st.sidebar.selectbox( "Annotation Category:", ["Medication Name", "Dosage", "Frequency", "Duration", "Patient Info", "Doctor Info", "Other"] ) return stroke_color, stroke_width, annotation_category def preprocess_image(image): """Resize image if too large for Streamlit Cloud""" max_size = (800, 800) # Maximum dimensions # Calculate aspect ratio width_ratio = max_size[0] / image.size[0] height_ratio = max_size[1] / image.size[1] resize_ratio = min(width_ratio, height_ratio) # Only resize if image is too large if resize_ratio < 1: new_size = ( int(image.size[0] * resize_ratio), int(image.size[1] * resize_ratio) ) return image.resize(new_size, Image.Resampling.LANCZOS) return image def handle_canvas_drawing(image, stroke_color, stroke_width, category): """Handle canvas drawing with preprocessed image""" processed_image = preprocess_image(image) canvas_result = st_canvas( fill_color="rgba(0, 0, 0, 0)", stroke_width=stroke_width, stroke_color=stroke_color, background_image=processed_image, update_streamlit=True, width=processed_image.size[0], height=processed_image.size[1], drawing_mode=st.session_state["current_tool"], display_toolbar=True, key="canvas", ) if canvas_result.json_data: objects = canvas_result.json_data.get("objects", []) for obj in objects: if obj not in [ann.get("object_data") for ann in st.session_state["annotations"]]: new_annotation = { "object_data": obj, "category": category, "text": "", "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } st.session_state["annotations"].append(new_annotation) st.session_state["annotation_history"].append(new_annotation) def display_annotation_list(): """Display and manage list of annotations""" st.sidebar.subheader("📝 Current Annotations") for i, annotation in enumerate(st.session_state["annotations"]): with st.sidebar.expander(f"Annotation {i+1} - {annotation['category']}"): # Update annotation text new_text = st.text_area( "Description:", annotation["text"], key=f"text_input_{i}" ) st.session_state["annotations"][i]["text"] = new_text # Display annotation details st.write(f"Created: {annotation['timestamp']}") # Delete individual annotation if st.button("Delete", key=f"delete_{i}"): st.session_state["annotations"].pop(i) st.rerun() def load_demo_image(): """Load demo prescription image""" demo_image_url = "/ordonnance-002.jpeg" return Image.open(requests.get(demo_image_url, stream=True).raw).convert("RGB") def save_annotations(image, uploaded_file): """Handle saving and downloading annotations""" st.sidebar.subheader("💾 Save & Export") if st.sidebar.button("Save and Download"): # Create annotated image annotated_image = image.copy() draw = ImageDraw.Draw(annotated_image) # Draw annotations for annotation in st.session_state["annotations"]: obj = annotation["object_data"] if obj["type"] == "rect": draw.rectangle( [obj["left"], obj["top"], obj["left"] + obj["width"], obj["top"] + obj["height"]], outline=obj["stroke"], width=int(obj["strokeWidth"]) ) # Add text label draw.text( (obj["left"], obj["top"] - 15), f"{annotation['category']}: {annotation['text']}", fill=obj["stroke"] ) # Save files timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Save annotated image img_buffer = io.BytesIO() annotated_image.save(img_buffer, format="JPEG", quality=95) img_buffer.seek(0) # Save annotations JSON annotations_data = { "image_id": uploaded_file.name, "timestamp": timestamp, "annotations": [ { "category": ann["category"], "text": ann["text"], "timestamp": ann["timestamp"], "object_data": ann["object_data"] } for ann in st.session_state["annotations"] ] } # Convert JSON to string first, then to bytes json_str = json.dumps(annotations_data, indent=2) json_bytes = json_str.encode('utf-8') json_buffer = io.BytesIO(json_bytes) # Download buttons col1, col2 = st.sidebar.columns(2) with col1: st.download_button( "📷 Download Image", data=img_buffer, file_name=f"annotated_{timestamp}.jpg", mime="image/jpeg" ) with col2: st.download_button( "📄 Download JSON", data=json_buffer, file_name=f"annotations_{timestamp}.json", mime="application/json" ) st.sidebar.success("✅ Files saved successfully!") def main(): """Main application logic""" initialize_session_state() if not authenticate_user(): return if st.button("📋 Load Demo Prescription"): demo_image = load_demo_image() uploaded_file = demo_image st.success("Demo prescription loaded successfully!") # File upload uploaded_file = st.file_uploader( "📤 Upload Prescription Image", type=["jpg", "jpeg", "png"], help="Upload a clear image of the prescription to annotate" ) if uploaded_file: # Load and display image image = Image.open(uploaded_file).convert("RGB") # Create two columns for layout col1, col2 = st.columns([2, 1]) with col1: # Get annotation settings stroke_color, stroke_width, category = create_sidebar_controls() # Handle canvas drawing handle_canvas_drawing(image, stroke_color, stroke_width, category) with col2: # Undo/Redo buttons col_undo, col_redo, col_clear = st.columns(3) with col_undo: if st.button("↩ī¸ Undo") and st.session_state["annotations"]: last_annotation = st.session_state["annotations"].pop() st.session_state["annotation_history"].append(last_annotation) with col_redo: if st.button("â†Ēī¸ Redo") and st.session_state["annotation_history"]: st.session_state["annotations"].append( st.session_state["annotation_history"].pop() ) with col_clear: if st.button("🗑ī¸ Clear All"): st.session_state["annotations"] = [] st.session_state["annotation_history"] = [] # Display annotation list display_annotation_list() # Save and download options save_annotations(image, uploaded_file) # Footer st.markdown("---") st.markdown( """

Alyse AI Prescription Annotation Tool v2.0

Created by: Jad Tounsi El Azzoiani and Amine Tahiri

Last Updated: November 2024

""", unsafe_allow_html=True ) if __name__ == "__main__": st.set_page_config( page_title="Alyse AI Prescription Annotator", page_icon="đŸĨ", layout="wide" ) main()