|
import torch |
|
import re |
|
import gradio as gr |
|
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel |
|
|
|
device='cpu' |
|
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) |
|
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) |
|
|
|
def predict(image,max_length=64, num_beams=4): |
|
image = image.convert('RGB') |
|
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) |
|
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] |
|
caption_ids = model.generate(image, max_length = max_length)[0] |
|
caption_text = clean_text(tokenizer.decode(caption_ids)) |
|
return caption_text |
|
|
|
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) |
|
output = gr.outputs.Textbox(type="auto",label="Captions") |
|
examples = [f"example{i}.jpg" for i in range(1,7)] |
|
|
|
title = "Image Captioning " |
|
description = "Made by : shreyasdixit.tech" |
|
interface = gr.Interface( |
|
|
|
fn=predict, |
|
description=description, |
|
inputs = input, |
|
theme="grass", |
|
outputs=output, |
|
examples = examples, |
|
title=title, |
|
) |
|
interface.launch(debug=True) |