Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import numpy as np
|
3 |
|
4 |
import gradio as gr
|
5 |
import mindspore
|
6 |
-
import mindspore.nn as nn
|
7 |
import mindspore.numpy as mnp
|
8 |
-
|
9 |
-
|
10 |
-
from mindspore import Tensor
|
11 |
-
from mindspore import load_checkpoint, load_param_into_net
|
12 |
from mindspore.common.initializer import Uniform, HeUniform
|
13 |
|
14 |
|
15 |
def load_glove():
|
16 |
embeddings = []
|
17 |
tokens = []
|
18 |
-
with open("./glove.6B.100d.txt", encoding='utf-8') as
|
19 |
-
for glove in
|
20 |
word, embedding = glove.split(maxsplit=1)
|
21 |
tokens.append(word)
|
22 |
-
embeddings.append(np.fromstring(embedding,
|
|
|
|
|
23 |
# 添加 <unk>, <pad> 两个特殊占位符对应的embedding
|
24 |
embeddings.append(np.random.rand(100))
|
25 |
embeddings.append(np.zeros((100,), np.float32))
|
26 |
|
27 |
-
vocab = dataset.text.Vocab.from_list(tokens,
|
|
|
|
|
28 |
embeddings = np.array(embeddings).astype(np.float32)
|
29 |
return vocab, embeddings
|
30 |
|
|
|
31 |
class RNN(nn.Cell):
|
32 |
def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
|
33 |
bidirectional, dropout, pad_idx):
|
34 |
super().__init__()
|
35 |
vocab_size, embedding_dim = embeddings.shape
|
36 |
-
self.embedding = nn.Embedding(vocab_size, embedding_dim,
|
|
|
|
|
37 |
self.rnn = nn.LSTM(embedding_dim,
|
38 |
hidden_dim,
|
39 |
num_layers=n_layers,
|
@@ -42,17 +63,22 @@ class RNN(nn.Cell):
|
|
42 |
batch_first=True)
|
43 |
weight_init = HeUniform(math.sqrt(5))
|
44 |
bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
|
45 |
-
self.
|
|
|
|
|
46 |
self.dropout = nn.Dropout(1 - dropout)
|
47 |
self.sigmoid = ops.Sigmoid()
|
48 |
|
49 |
def construct(self, inputs):
|
50 |
embedded = self.dropout(self.embedding(inputs))
|
51 |
_, (hidden, _) = self.rnn(embedded)
|
52 |
-
hidden = self.dropout(mnp.concatenate((hidden[-2, :, :],
|
53 |
-
|
|
|
|
|
54 |
return self.sigmoid(output)
|
55 |
|
|
|
56 |
def predict_sentiment(model, vocab, sentence):
|
57 |
model.set_train(False)
|
58 |
tokenized = sentence.lower().split()
|
@@ -62,44 +88,44 @@ def predict_sentiment(model, vocab, sentence):
|
|
62 |
prediction = model(tensor)
|
63 |
return prediction.asnumpy()
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
# 预测
|
85 |
pred = predict_sentiment(net, vocab, sentence).item()
|
86 |
result = {
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
return result
|
91 |
-
|
|
|
92 |
gr.Interface(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
1 |
+
# Copyright 2022 Huawei Technologies Co., Ltd
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ============================================================================
|
15 |
+
""" LSTM inference """
|
16 |
+
|
17 |
+
|
18 |
import math
|
19 |
import numpy as np
|
20 |
|
21 |
import gradio as gr
|
22 |
import mindspore
|
|
|
23 |
import mindspore.numpy as mnp
|
24 |
+
from mindspore import Tensor, nn, \
|
25 |
+
load_checkpoint, load_param_into_net, ops, dataset
|
|
|
|
|
26 |
from mindspore.common.initializer import Uniform, HeUniform
|
27 |
|
28 |
|
29 |
def load_glove():
|
30 |
embeddings = []
|
31 |
tokens = []
|
32 |
+
with open("./glove.6B.100d.txt", encoding='utf-8') as file:
|
33 |
+
for glove in file:
|
34 |
word, embedding = glove.split(maxsplit=1)
|
35 |
tokens.append(word)
|
36 |
+
embeddings.append(np.fromstring(embedding,
|
37 |
+
dtype=np.float32,
|
38 |
+
sep=' '))
|
39 |
# 添加 <unk>, <pad> 两个特殊占位符对应的embedding
|
40 |
embeddings.append(np.random.rand(100))
|
41 |
embeddings.append(np.zeros((100,), np.float32))
|
42 |
|
43 |
+
vocab = dataset.text.Vocab.from_list(tokens,
|
44 |
+
special_tokens=["<unk>", "<pad>"],
|
45 |
+
special_first=False)
|
46 |
embeddings = np.array(embeddings).astype(np.float32)
|
47 |
return vocab, embeddings
|
48 |
|
49 |
+
|
50 |
class RNN(nn.Cell):
|
51 |
def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
|
52 |
bidirectional, dropout, pad_idx):
|
53 |
super().__init__()
|
54 |
vocab_size, embedding_dim = embeddings.shape
|
55 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim,
|
56 |
+
embedding_table=Tensor(embeddings),
|
57 |
+
padding_idx=pad_idx)
|
58 |
self.rnn = nn.LSTM(embedding_dim,
|
59 |
hidden_dim,
|
60 |
num_layers=n_layers,
|
|
|
63 |
batch_first=True)
|
64 |
weight_init = HeUniform(math.sqrt(5))
|
65 |
bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
|
66 |
+
self.fc_layer = nn.Dense(hidden_dim * 2, output_dim,
|
67 |
+
weight_init=weight_init,
|
68 |
+
bias_init=bias_init)
|
69 |
self.dropout = nn.Dropout(1 - dropout)
|
70 |
self.sigmoid = ops.Sigmoid()
|
71 |
|
72 |
def construct(self, inputs):
|
73 |
embedded = self.dropout(self.embedding(inputs))
|
74 |
_, (hidden, _) = self.rnn(embedded)
|
75 |
+
hidden = self.dropout(mnp.concatenate((hidden[-2, :, :],
|
76 |
+
hidden[-1, :, :]),
|
77 |
+
axis=1))
|
78 |
+
output = self.fc_layer(hidden)
|
79 |
return self.sigmoid(output)
|
80 |
|
81 |
+
|
82 |
def predict_sentiment(model, vocab, sentence):
|
83 |
model.set_train(False)
|
84 |
tokenized = sentence.lower().split()
|
|
|
88 |
prediction = model(tensor)
|
89 |
return prediction.asnumpy()
|
90 |
|
91 |
+
|
92 |
+
vocab, embeddings = load_glove()
|
93 |
+
|
94 |
+
net = RNN(embeddings,
|
95 |
+
hidden_dim=256,
|
96 |
+
output_dim=1,
|
97 |
+
n_layers=2,
|
98 |
+
bidirectional=True,
|
99 |
+
dropout=0.5,
|
100 |
+
pad_idx=vocab.tokens_to_ids('<pad>'))
|
101 |
+
# 将模型参数存入parameter的字典中
|
102 |
+
param_dict = load_checkpoint("./sentiment-analysis.ckpt")
|
103 |
+
|
104 |
+
# 将参数加载到网络中
|
105 |
+
load_param_into_net(net, param_dict)
|
106 |
+
|
107 |
+
|
108 |
+
def predict_emotion(sentence):
|
|
|
109 |
# 预测
|
110 |
pred = predict_sentiment(net, vocab, sentence).item()
|
111 |
result = {
|
112 |
+
"Positive 🙂": pred,
|
113 |
+
"Negative 🙃": 1 - pred,
|
114 |
+
}
|
115 |
return result
|
116 |
+
|
117 |
+
|
118 |
gr.Interface(
|
119 |
+
fn=predict_emotion,
|
120 |
+
inputs=gr.inputs.Textbox(
|
121 |
+
lines=3,
|
122 |
+
placeholder="Type a phrase that has some emotion",
|
123 |
+
label="Input Text",
|
124 |
+
),
|
125 |
+
outputs="label",
|
126 |
+
title="基于LSTM的文本情感分类任务",
|
127 |
+
examples=[
|
128 |
+
"This film is terrible",
|
129 |
+
"This film is great",
|
130 |
+
],
|
131 |
+
).launch(share=True)
|