Spaces:
Sleeping
Sleeping
File size: 14,447 Bytes
7803dd9 b0fc62e 7803dd9 b0fc62e 7803dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import ast
import gradio as gr
import os
import re
import json
import logging
import torch
from datetime import datetime
from threading import Thread
from typing import Optional
from transformers import TextIteratorStreamer
from functools import partial
from huggingface_hub import CommitScheduler
from uuid import uuid4
from pathlib import Path
from code_interpreter.JupyterClient import JupyterNotebook
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from code_interpreter.OpenCodeInterpreter import OpenCodeInterpreter
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
upvote_button_value = "π Upvote Conversation"
downvote_button_value = "π Downvote Conversation"
scheduler = CommitScheduler(
repo_id="opencodeinterpreter_user_data",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
private=True
)
logging.basicConfig(level=logging.INFO)
class StreamingOpenCodeInterpreter(OpenCodeInterpreter):
streamer: Optional[TextIteratorStreamer] = None
# overwirte generate function
@torch.inference_mode()
def generate(
self,
prompt: str = "",
max_new_tokens = 1024,
do_sample: bool = False,
top_p: float = 0.95,
top_k: int = 50,
) -> str:
# Get the model and tokenizer, and tokenize the user text.
self.streamer = TextIteratorStreamer(
self.tokenizer, skip_prompt=True, Timeout=5
)
inputs = self.tokenizer([prompt], return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH)
inputs = inputs.to(self.model.device)
kwargs = dict(
**inputs,
streamer=self.streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
eos_token_id=self.tokenizer.eos_token_id
)
thread = Thread(target=self.model.generate, kwargs=kwargs)
thread.start()
return ""
def save_json(dialog, mode, json_file_path, flag, dialog_id) -> None:
with scheduler.lock:
with json_file_path.open("a") as f:
json.dump({"id": dialog_id, "dialog": dialog, "mode": mode, "flag": flag, "datetime": datetime.now().isoformat()}, f, ensure_ascii=False)
f.write("\n")
def convert_history(gradio_history: list[list], interpreter_history: list[dict]):
interpreter_history = [interpreter_history[0]] if interpreter_history and interpreter_history[0]["role"] == "system" else []
if not gradio_history:
return interpreter_history
for item in gradio_history:
if item[0] is not None:
interpreter_history.append({"role": "user", "content": item[0]})
if item[1] is not None:
interpreter_history.append({"role": "assistant", "content": item[1]})
return interpreter_history
def reset_dialog_info(dialog_info):
new_uuid = str(uuid4())
logging.info(f"allocating new uuid {new_uuid} for conversation...")
return [new_uuid, None]
def is_valid_python_code(code):
try:
ast.parse(code)
return True
except SyntaxError:
return False
class InputFunctionVisitor(ast.NodeVisitor):
def __init__(self):
self.found_input = False
def visit_Call(self, node):
if isinstance(node.func, ast.Name) and node.func.id == 'input':
self.found_input = True
self.generic_visit(node)
def has_input_function_calls(code):
try:
tree = ast.parse(code)
except SyntaxError:
return False
visitor = InputFunctionVisitor()
visitor.visit(tree)
return visitor.found_input
def gradio_launch(model_path: str, MAX_TRY: int = 3):
with gr.Blocks() as demo:
gr.Markdown("# The Official Demo of OpenCodeInterpreter Models")
gr.Markdown("**We use `m-a-p/OpenCodeInterpreter-DS-6.7B` model in this demo.**")
gr.Markdown("**NOTE: Please read the disclaimer section in [README.md](https://huggingface.co/spaces/m-a-p/OpenCodeInterpreter_demo/blob/main/README.md) before using this demo!**")
gr.Markdown("**By using this demo, you acknowledge that you have read this disclaimer, understand its terms, and agree to be bound by them.**")
chatbot = gr.Chatbot(label="OpenCodeInterpreter", avatar_images=["assets/user.pic.jpg", "assets/assistant.pic.jpg"], show_copy_button=True)
with gr.Group():
with gr.Row():
msg = gr.Textbox(
container=False,
show_label=False,
label="Message",
placeholder="Type a message...",
scale=7,
autofocus=True
)
sub = gr.Button(
"Submit",
variant="primary",
scale=1,
min_width=150
)
# stop = gr.Button(
# "Stop",
# variant="stop",
# visible=False,
# scale=1,
# min_width=150
# )
with gr.Row():
# retry = gr.Button("π Retry", variant="secondary")
# undo = gr.Button("β©οΈ Undo", variant="secondary")
upvote = gr.Button(upvote_button_value, variant="secondary")
downvote = gr.Button(downvote_button_value, variant="secondary")
clear = gr.Button("ποΈ Clear", variant="secondary")
session_state = gr.State([])
jupyter_state = gr.State(JupyterNotebook())
dialog_info = gr.State(["", None])
demo.load(reset_dialog_info, dialog_info, dialog_info)
def bot(user_message, history, jupyter_state, dialog_info, interpreter):
logging.info(f"user message: {user_message}")
interpreter.dialog = convert_history(gradio_history=history, interpreter_history=interpreter.dialog)
history.append([user_message, None])
interpreter.dialog.append({"role": "user", "content": user_message})
# setup
HAS_CODE = False # For now
prompt = interpreter.dialog_to_prompt(dialog=interpreter.dialog)
_ = interpreter.generate(prompt)
history[-1][1] = ""
generated_text = ""
for character in interpreter.streamer:
history[-1][1] += character
history[-1][1] = history[-1][1].replace("<|EOT|>","")
generated_text += character
yield history, history, jupyter_state, dialog_info
if is_valid_python_code(history[-1][1].strip()):
history[-1][1] = f"```python\n{history[-1][1].strip()}\n```"
generated_text = history[-1][1]
HAS_CODE, generated_code_block = interpreter.extract_code_blocks(
generated_text
)
interpreter.dialog.append(
{
"role": "assistant",
"content": generated_text.replace("<unk>_", "")
.replace("<unk>", "")
.replace("<|EOT|>", ""),
}
)
logging.info(f"saving current dialog to file {dialog_info[0]}.json...")
logging.info(f"current dialog: {interpreter.dialog}")
save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0])
attempt = 1
while HAS_CODE:
if attempt > MAX_TRY:
break
# if no code then doesn't have to execute it
generated_text = "" # clear generated text
yield history, history, jupyter_state, dialog_info
# replace unknown thing to none ''
generated_code_block = generated_code_block.replace(
"<unk>_", ""
).replace("<unk>", "")
if has_input_function_calls(generated_code_block):
code_block_output = "Please directly assign the value of inputs instead of using input() function in your code."
else:
(
code_block_output,
error_flag,
) = interpreter.execute_code_and_return_output(
f"{generated_code_block}",
jupyter_state
)
if error_flag == "Timeout":
logging.info(f"{dialog_info[0]}: Restart jupyter kernel due to timeout")
jupyter_state = JupyterNotebook()
code_block_output = interpreter.clean_code_output(code_block_output)
if code_block_output.strip():
code_block_output = "Execution result: \n" + code_block_output
else:
code_block_output = "Code is executed, but result is empty. Please make sure that you include test case in your code."
history.append([code_block_output, ""])
interpreter.dialog.append({"role": "user", "content": code_block_output})
yield history, history, jupyter_state, dialog_info
prompt = interpreter.dialog_to_prompt(dialog=interpreter.dialog)
logging.info(f"generating answer for dialog {dialog_info[0]}")
_ = interpreter.generate(prompt)
for character in interpreter.streamer:
history[-1][1] += character
history[-1][1] = history[-1][1].replace("<|EOT|>","")
generated_text += character
yield history, history, jupyter_state, dialog_info
logging.info(f"finish generating answer for dialog {dialog_info[0]}")
HAS_CODE, generated_code_block = interpreter.extract_code_blocks(
history[-1][1]
)
interpreter.dialog.append(
{
"role": "assistant",
"content": generated_text.replace("<unk>_", "")
.replace("<unk>", "")
.replace("<|EOT|>", ""),
}
)
attempt += 1
logging.info(f"saving current dialog to file {dialog_info[0]}.json...")
logging.info(f"current dialog: {interpreter.dialog}")
save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0])
if generated_text.endswith("<|EOT|>"):
continue
return history, history, jupyter_state, dialog_info
def reset_textbox():
return gr.update(value="")
def set_button_variant(upvote_button_variant, downvote_button_variant):
return gr.Button(upvote_button_value, variant=upvote_button_variant), gr.Button(downvote_button_value, variant=downvote_button_variant)
def reset_button_and_flag(dialog_info):
return (*set_button_variant("secondary", "secondary"), [dialog_info[0], None])
def clear_history(history, jupyter_state, dialog_info, interpreter):
interpreter.dialog = []
jupyter_state.close()
return ([], [], JupyterNotebook(), reset_dialog_info(dialog_info), *set_button_variant("secondary", "secondary"))
def toggle_preference(button, dialog_info):
if button == upvote_button_value:
dialog_info[1] = True
elif button == downvote_button_value:
dialog_info[1] = False
else:
raise ValueError(button)
logging.info(f"{button} is clicked by {dialog_info[0]}, current flag: {dialog_info[1]}")
if dialog_info[1] is None:
return (*set_button_variant("secondary", "secondary"), dialog_info)
elif dialog_info[1]:
return (*set_button_variant("primary", "secondary"), dialog_info)
else:
return (*set_button_variant("secondary", "primary"), dialog_info)
def save_preference(dialog_info, interpreter):
if interpreter.dialog:
save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0])
return dialog_info
interpreter = StreamingOpenCodeInterpreter(model_path=model_path)
sub.click(reset_button_and_flag, dialog_info, [upvote, downvote, dialog_info])
sub.click(partial(bot, interpreter=interpreter), [msg, session_state, jupyter_state, dialog_info], [chatbot, session_state, jupyter_state, dialog_info])
sub.click(reset_textbox, [], [msg])
clear.click(
partial(clear_history, interpreter=interpreter),
[session_state, jupyter_state, dialog_info],
[chatbot, session_state, jupyter_state, dialog_info, upvote, downvote],
queue=False
)
upvote.click(
toggle_preference,
[upvote, dialog_info],
[upvote, downvote, dialog_info]
).then(
partial(save_preference, interpreter=interpreter),
dialog_info,
dialog_info
)
downvote.click(
toggle_preference,
[downvote, dialog_info],
[upvote, downvote, dialog_info]
).then(
partial(save_preference, interpreter=interpreter),
dialog_info,
dialog_info
)
demo.queue(max_size=20)
demo.launch(share=True)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--path",
type=str,
required=False,
help="Path to the OpenCodeInterpreter Model.",
default="m-a-p/OpenCodeInterpreter-DS-6.7B",
)
args = parser.parse_args()
gradio_launch(model_path=args.path)
|