import ast import gradio as gr import os import re import json import logging import torch from datetime import datetime from threading import Thread from typing import Optional from transformers import TextIteratorStreamer from functools import partial from huggingface_hub import CommitScheduler from uuid import uuid4 from pathlib import Path from code_interpreter.JupyterClient import JupyterNotebook MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) import warnings warnings.filterwarnings("ignore", category=UserWarning, module="transformers") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" from code_interpreter.OpenCodeInterpreter import OpenCodeInterpreter JSON_DATASET_DIR = Path("json_dataset") JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) upvote_button_value = "👍 Upvote Conversation" downvote_button_value = "👎 Downvote Conversation" scheduler = CommitScheduler( repo_id="opencodeinterpreter_user_data", repo_type="dataset", folder_path=JSON_DATASET_DIR, path_in_repo="data", private=True ) logging.basicConfig(level=logging.INFO) class StreamingOpenCodeInterpreter(OpenCodeInterpreter): streamer: Optional[TextIteratorStreamer] = None # overwirte generate function @torch.inference_mode() def generate( self, prompt: str = "", max_new_tokens = 1024, do_sample: bool = False, top_p: float = 0.95, top_k: int = 50, ) -> str: # Get the model and tokenizer, and tokenize the user text. self.streamer = TextIteratorStreamer( self.tokenizer, skip_prompt=True, Timeout=5 ) inputs = self.tokenizer([prompt], return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH) inputs = inputs.to(self.model.device) kwargs = dict( **inputs, streamer=self.streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=top_p, top_k=top_k, eos_token_id=self.tokenizer.eos_token_id ) thread = Thread(target=self.model.generate, kwargs=kwargs) thread.start() return "" def save_json(dialog, mode, json_file_path, flag, dialog_id) -> None: with scheduler.lock: with json_file_path.open("a") as f: json.dump({"id": dialog_id, "dialog": dialog, "mode": mode, "flag": flag, "datetime": datetime.now().isoformat()}, f, ensure_ascii=False) f.write("\n") def convert_history(gradio_history: list[list], interpreter_history: list[dict]): interpreter_history = [interpreter_history[0]] if interpreter_history and interpreter_history[0]["role"] == "system" else [] if not gradio_history: return interpreter_history for item in gradio_history: if item[0] is not None: interpreter_history.append({"role": "user", "content": item[0]}) if item[1] is not None: interpreter_history.append({"role": "assistant", "content": item[1]}) return interpreter_history def reset_dialog_info(dialog_info): new_uuid = str(uuid4()) logging.info(f"allocating new uuid {new_uuid} for conversation...") return [new_uuid, None] def is_valid_python_code(code): try: ast.parse(code) return True except SyntaxError: return False class InputFunctionVisitor(ast.NodeVisitor): def __init__(self): self.found_input = False def visit_Call(self, node): if isinstance(node.func, ast.Name) and node.func.id == 'input': self.found_input = True self.generic_visit(node) def has_input_function_calls(code): try: tree = ast.parse(code) except SyntaxError: return False visitor = InputFunctionVisitor() visitor.visit(tree) return visitor.found_input def gradio_launch(model_path: str, MAX_TRY: int = 3): with gr.Blocks() as demo: gr.Markdown("# Online Demo of OpenCodeInterpreter Models") gr.Markdown("**NOTE: Please read the disclaimer section in [README.md](https://huggingface.co/spaces/m-a-p/OpenCodeInterpreter_demo/blob/main/README.md) before using this demo!**") gr.Markdown("**By using this demo, you acknowledge that you have read this disclaimer, understand its terms, and agree to be bound by them.**") chatbot = gr.Chatbot(height=600, label="OpenCodeInterpreter", avatar_images=["assets/user.pic.jpg", "assets/assistant.pic.jpg"], show_copy_button=True) with gr.Group(): with gr.Row(): msg = gr.Textbox( container=False, show_label=False, label="Message", placeholder="Type a message...", scale=7, autofocus=True ) sub = gr.Button( "Submit", variant="primary", scale=1, min_width=150 ) # stop = gr.Button( # "Stop", # variant="stop", # visible=False, # scale=1, # min_width=150 # ) with gr.Row(): # retry = gr.Button("🔄 Retry", variant="secondary") # undo = gr.Button("↩ī¸ Undo", variant="secondary") upvote = gr.Button(upvote_button_value, variant="secondary") downvote = gr.Button(downvote_button_value, variant="secondary") clear = gr.Button("🗑ī¸ Clear", variant="secondary") session_state = gr.State([]) jupyter_state = gr.State(JupyterNotebook()) dialog_info = gr.State(["", None]) demo.load(reset_dialog_info, dialog_info, dialog_info) def bot(user_message, history, jupyter_state, dialog_info, interpreter): logging.info(f"user message: {user_message}") interpreter.dialog = convert_history(gradio_history=history, interpreter_history=interpreter.dialog) history.append([user_message, None]) interpreter.dialog.append({"role": "user", "content": user_message}) # setup HAS_CODE = False # For now prompt = interpreter.dialog_to_prompt(dialog=interpreter.dialog) _ = interpreter.generate(prompt) history[-1][1] = "" generated_text = "" for character in interpreter.streamer: history[-1][1] += character history[-1][1] = history[-1][1].replace("<|EOT|>","") generated_text += character yield history, history, jupyter_state, dialog_info if is_valid_python_code(history[-1][1].strip()): history[-1][1] = f"```python\n{history[-1][1].strip()}\n```" generated_text = history[-1][1] HAS_CODE, generated_code_block = interpreter.extract_code_blocks( generated_text ) interpreter.dialog.append( { "role": "assistant", "content": generated_text.replace("_", "") .replace("", "") .replace("<|EOT|>", ""), } ) logging.info(f"saving current dialog to file {dialog_info[0]}.json...") logging.info(f"current dialog: {interpreter.dialog}") save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0]) attempt = 1 while HAS_CODE: if attempt > MAX_TRY: break # if no code then doesn't have to execute it generated_text = "" # clear generated text yield history, history, jupyter_state, dialog_info # replace unknown thing to none '' generated_code_block = generated_code_block.replace( "_", "" ).replace("", "") if has_input_function_calls(generated_code_block): code_block_output = "Please directly assign the value of inputs instead of using input() function in your code." else: ( code_block_output, error_flag, ) = interpreter.execute_code_and_return_output( f"{generated_code_block}", jupyter_state ) if error_flag == "Timeout": logging.info(f"{dialog_info[0]}: Restart jupyter kernel due to timeout") jupyter_state = JupyterNotebook() code_block_output = interpreter.clean_code_output(code_block_output) if code_block_output.strip(): code_block_output = "Execution result: \n" + code_block_output else: code_block_output = "Code is executed, but result is empty. Please make sure that you include test case in your code." history.append([code_block_output, ""]) interpreter.dialog.append({"role": "user", "content": code_block_output}) yield history, history, jupyter_state, dialog_info prompt = interpreter.dialog_to_prompt(dialog=interpreter.dialog) logging.info(f"generating answer for dialog {dialog_info[0]}") _ = interpreter.generate(prompt) for character in interpreter.streamer: history[-1][1] += character history[-1][1] = history[-1][1].replace("<|EOT|>","") generated_text += character yield history, history, jupyter_state, dialog_info logging.info(f"finish generating answer for dialog {dialog_info[0]}") HAS_CODE, generated_code_block = interpreter.extract_code_blocks( history[-1][1] ) interpreter.dialog.append( { "role": "assistant", "content": generated_text.replace("_", "") .replace("", "") .replace("<|EOT|>", ""), } ) attempt += 1 logging.info(f"saving current dialog to file {dialog_info[0]}.json...") logging.info(f"current dialog: {interpreter.dialog}") save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0]) if generated_text.endswith("<|EOT|>"): continue return history, history, jupyter_state, dialog_info def reset_textbox(): return gr.update(value="") def set_button_variant(upvote_button_variant, downvote_button_variant): return gr.Button(upvote_button_value, variant=upvote_button_variant), gr.Button(downvote_button_value, variant=downvote_button_variant) def reset_button_and_flag(dialog_info): return (*set_button_variant("secondary", "secondary"), [dialog_info[0], None]) def clear_history(history, jupyter_state, dialog_info, interpreter): interpreter.dialog = [] jupyter_state.close() return ([], [], JupyterNotebook(), reset_dialog_info(dialog_info), *set_button_variant("secondary", "secondary")) def toggle_preference(button, dialog_info): if button == upvote_button_value: dialog_info[1] = True elif button == downvote_button_value: dialog_info[1] = False else: raise ValueError(button) logging.info(f"{button} is clicked by {dialog_info[0]}, current flag: {dialog_info[1]}") if dialog_info[1] is None: return (*set_button_variant("secondary", "secondary"), dialog_info) elif dialog_info[1]: return (*set_button_variant("primary", "secondary"), dialog_info) else: return (*set_button_variant("secondary", "primary"), dialog_info) def save_preference(dialog_info, interpreter): if interpreter.dialog: save_json(interpreter.dialog, mode="openci_only", flag=dialog_info[1], json_file_path=JSON_DATASET_DIR/f"{dialog_info[0]}.json", dialog_id=dialog_info[0]) return dialog_info interpreter = StreamingOpenCodeInterpreter(model_path=model_path) sub.click(reset_button_and_flag, dialog_info, [upvote, downvote, dialog_info]) sub.click(partial(bot, interpreter=interpreter), [msg, session_state, jupyter_state, dialog_info], [chatbot, session_state, jupyter_state, dialog_info]) sub.click(reset_textbox, [], [msg]) clear.click( partial(clear_history, interpreter=interpreter), [session_state, jupyter_state, dialog_info], [chatbot, session_state, jupyter_state, dialog_info, upvote, downvote], queue=False ) upvote.click( toggle_preference, [upvote, dialog_info], [upvote, downvote, dialog_info] ).then( partial(save_preference, interpreter=interpreter), dialog_info, dialog_info ) downvote.click( toggle_preference, [downvote, dialog_info], [upvote, downvote, dialog_info] ).then( partial(save_preference, interpreter=interpreter), dialog_info, dialog_info ) demo.queue(max_size=20) demo.launch(share=True) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--path", type=str, required=False, help="Path to the OpenCodeInterpreter Model.", default="m-a-p/OpenCodeInterpreter-DS-6.7B", ) args = parser.parse_args() gradio_launch(model_path=args.path)