Spaces:
Running
Running
File size: 1,522 Bytes
134672c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import threading
from typing import Any, Optional, List
import insightface
import numpy
import spaces
import roop.globals
from roop.typing import Frame, Face
FACE_ANALYSER = None
THREAD_LOCK = threading.Lock()
@spaces.GPU()
def get_face_analyser() -> Any:
global FACE_ANALYSER
with THREAD_LOCK:
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0)
return FACE_ANALYSER
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def get_one_face(frame: Frame, position: int = 0) -> Optional[Face]:
many_faces = get_many_faces(frame)
if many_faces:
try:
return many_faces[position]
except IndexError:
return many_faces[-1]
return None
def get_many_faces(frame: Frame) -> Optional[List[Face]]:
try:
return get_face_analyser().get(frame)
except ValueError:
return None
def find_similar_face(frame: Frame, reference_face: Face) -> Optional[Face]:
many_faces = get_many_faces(frame)
if many_faces:
for face in many_faces:
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
distance = numpy.sum(numpy.square(face.normed_embedding - reference_face.normed_embedding))
if distance < roop.globals.similar_face_distance:
return face
return None
|