prithivMLmods's picture
Upload 20 files
c0bdbd3 verified
raw
history blame
3.53 kB
from typing import Any, List, Callable
import cv2
import threading
from gfpgan.utils import GFPGANer
import roop.globals
import roop.processors.frame.core
from roop.core import update_status
from roop.face_analyser import get_many_faces
from roop.typing import Frame, Face
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video
FACE_ENHANCER = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = 'ROOP.FACE-ENHANCER'
def get_face_enhancer() -> Any:
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
# todo: set models path -> https://github.com/TencentARC/GFPGAN/issues/399
FACE_ENHANCER = GFPGANer(model_path=model_path, upscale=1, device=get_device())
return FACE_ENHANCER
def get_device() -> str:
if 'CUDAExecutionProvider' in roop.globals.execution_providers:
return 'cuda'
if 'CoreMLExecutionProvider' in roop.globals.execution_providers:
return 'mps'
return 'cpu'
def clear_face_enhancer() -> None:
global FACE_ENHANCER
FACE_ENHANCER = None
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
return True
def pre_start() -> bool:
if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path):
update_status('Select an image or video for target path.', NAME)
return False
return True
def post_process() -> None:
clear_face_enhancer()
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame:
start_x, start_y, end_x, end_y = map(int, target_face['bbox'])
padding_x = int((end_x - start_x) * 0.5)
padding_y = int((end_y - start_y) * 0.5)
start_x = max(0, start_x - padding_x)
start_y = max(0, start_y - padding_y)
end_x = max(0, end_x + padding_x)
end_y = max(0, end_y + padding_y)
temp_face = temp_frame[start_y:end_y, start_x:end_x]
if temp_face.size:
with THREAD_SEMAPHORE:
_, _, temp_face = get_face_enhancer().enhance(
temp_face,
paste_back=True
)
temp_frame[start_y:end_y, start_x:end_x] = temp_face
return temp_frame
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame:
many_faces = get_many_faces(temp_frame)
if many_faces:
for target_face in many_faces:
temp_frame = enhance_face(target_face, temp_frame)
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result)
if update:
update()
def process_image(source_path: str, target_path: str, output_path: str) -> None:
target_frame = cv2.imread(target_path)
result = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames)