import spaces import time import os import gradio as gr import torch from einops import rearrange from PIL import Image from transformers import pipeline from flux.cli import SamplingOptions from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack from flux.util import load_ae, load_clip, load_flow_model, load_t5 from pulid.pipeline_flux import PuLIDPipeline from pulid.utils import resize_numpy_image_long NSFW_THRESHOLD = 0.85 def get_models(name: str, device: torch.device, offload: bool): t5 = load_t5(device, max_length=128) clip = load_clip(device) model = load_flow_model(name, device="cpu" if offload else device) model.eval() ae = load_ae(name, device="cpu" if offload else device) nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device) return model, ae, t5, clip, nsfw_classifier class FluxGenerator: def __init__(self): self.device = torch.device('cuda') self.offload = False self.model_name = 'flux-dev' self.model, self.ae, self.t5, self.clip, self.nsfw_classifier = get_models( self.model_name, device=self.device, offload=self.offload, ) self.pulid_model = PuLIDPipeline(self.model, 'cuda', weight_dtype=torch.bfloat16) self.pulid_model.load_pretrain() flux_generator = FluxGenerator() @spaces.GPU @torch.inference_mode() def generate_image( prompt, id_image, start_step, guidance, seed, true_cfg, width=896, height=1152, num_steps=20, id_weight=1.0, neg_prompt="bad quality, worst quality, text, signature, watermark, extra limbs", timestep_to_start_cfg=1, max_sequence_length=128, ): flux_generator.t5.max_length = max_sequence_length seed = int(seed) if seed == -1: seed = None opts = SamplingOptions( prompt=prompt, width=width, height=height, num_steps=num_steps, guidance=guidance, seed=seed, ) if opts.seed is None: opts.seed = torch.Generator(device="cpu").seed() print(f"Generating '{opts.prompt}' with seed {opts.seed}") t0 = time.perf_counter() use_true_cfg = abs(true_cfg - 1.0) > 1e-2 if id_image is not None: id_image = resize_numpy_image_long(id_image, 1024) id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg) else: id_embeddings = None uncond_id_embeddings = None # prepare input x = get_noise( 1, opts.height, opts.width, device=flux_generator.device, dtype=torch.bfloat16, seed=opts.seed, ) timesteps = get_schedule( opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=True, ) if flux_generator.offload: flux_generator.t5, flux_generator.clip = flux_generator.t5.to(flux_generator.device), flux_generator.clip.to(flux_generator.device) inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=opts.prompt) inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=neg_prompt) if use_true_cfg else None # offload TEs to CPU, load model to gpu if flux_generator.offload: flux_generator.t5, flux_generator.clip = flux_generator.t5.cpu(), flux_generator.clip.cpu() torch.cuda.empty_cache() flux_generator.model = flux_generator.model.to(flux_generator.device) # denoise initial noise x = denoise( flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg, timestep_to_start_cfg=timestep_to_start_cfg, neg_txt=inp_neg["txt"] if use_true_cfg else None, neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, neg_vec=inp_neg["vec"] if use_true_cfg else None, ) # offload model, load autoencoder to gpu if flux_generator.offload: flux_generator.model.cpu() torch.cuda.empty_cache() flux_generator.ae.decoder.to(x.device) # decode latents to pixel space x = unpack(x.float(), opts.height, opts.width) with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): x = flux_generator.ae.decode(x) if flux_generator.offload: flux_generator.ae.decoder.cpu() torch.cuda.empty_cache() t1 = time.perf_counter() print(f"Done in {t1 - t0:.1f}s.") # bring into PIL format x = x.clamp(-1, 1) # x = embed_watermark(x.float()) x = rearrange(x[0], "c h w -> h w c") img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) nsfw_score = [x["score"] for x in flux_generator.nsfw_classifier(img) if x["label"] == "nsfw"][0] if nsfw_score < NSFW_THRESHOLD: return img, str(opts.seed), flux_generator.pulid_model.debug_img_list else: return (None, f"Your generated image may contain NSFW (with nsfw_score: {nsfw_score}) content", flux_generator.pulid_model.debug_img_list) _HEADER_ = '''

PuLID for FLUX

Paper: PuLID: Pure and Lightning ID Customization via Contrastive Alignment | Codes: GitHub

🚩 Updates: - 2023.11.01: update PuLID-FLUX-v0.9.1, please refer to our github repo for more details. ❗️❗️❗️**Tips:** - `timestep to start inserting ID:` The smaller the value, the higher the fidelity, but the lower the editability; the higher the value, the lower the fidelity, but the higher the editability. **The recommended range for this value is between 0 and 4**. For photorealistic scenes, we recommend using 4; for stylized scenes, we recommend using 0-1. If you are not satisfied with the similarity, you can lower this value; conversely, if you are not satisfied with the editability, you can increase this value. - `true CFG scale:` In most scenarios, it is recommended to use a fake CFG, i.e., setting the true CFG scale to 1, and just adjusting the guidance scale. This is also more efficiency. However, in a few cases, utilizing a true CFG can yield better results. For more detaileds, please refer to the [doc](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md#useful-tips). - `Learn more about the model:` please refer to the github doc for more details and info about the model, we provide the detail explanation about the above two parameters in the doc. - `Examples:` we provide some examples (we have cached them, so just click them to see what the model can do) in the bottom, you can try these example prompts first ''' # noqa E501 _CITE_ = r""" If PuLID is helpful, please help to ⭐ the Github Repo. Thanks! --- 📧 **Contact** If you have any questions or feedbacks, feel free to open a discussion or contact wuyanze123@gmail.com. """ # noqa E501 _DEV_DES = ''' * Please refer to our repo for instructions on running gradio demo [locally](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md#local-gradio-demo) ''' def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False): with gr.Blocks() as demo: with gr.Accordion("For Developers", open=False): gr.Markdown(_DEV_DES) gr.Markdown(_HEADER_) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic") id_image = gr.Image(label="ID Image") id_weight = gr.Slider(0.0, 3.0, 1, step=0.05, label="id weight") width = gr.Slider(256, 1536, 896, step=16, label="Width") height = gr.Slider(256, 1536, 1152, step=16, label="Height") num_steps = gr.Slider(1, 20, 20, step=1, label="Number of steps") start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID") guidance = gr.Slider(1.0, 10.0, 4, step=0.1, label="Guidance") seed = gr.Textbox(-1, label="Seed (-1 for random)") max_sequence_length = gr.Slider(128, 512, 128, step=128, label="max_sequence_length for prompt (T5), small will be faster") with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG, if using true CFG, we recommend set the guidance scale to 1)", open=False): # noqa E501 neg_prompt = gr.Textbox( label="Negative Prompt", value="bad quality, worst quality, text, signature, watermark, extra limbs") true_cfg = gr.Slider(1.0, 10.0, 1, step=0.1, label="true CFG scale") timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev) generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image", format='png') seed_output = gr.Textbox(label="Used Seed") intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev) gr.Markdown(_CITE_) with gr.Row(), gr.Column(): gr.Markdown("## Examples") example_inps = [ [ 'a woman holding sign with glowing green text \"PuLID for FLUX\"', 'example_inputs/liuyifei.png', 4, 4, 2680261499100305976, 1 ], [ 'portrait, side view', 'example_inputs/liuyifei.png', 4, 4, 180825677246321775, 1 ], [ 'white-haired woman with vr technology atmosphere, revolutionary exceptional magnum with remarkable details', # noqa E501 'example_inputs/liuyifei.png', 4, 4, 16942328329935464989, 1 ], [ 'a young child is eating Icecream', 'example_inputs/liuyifei.png', 4, 4, 4527590969012358757, 1 ], [ 'a man is holding a sign with text \"PuLID for FLUX\", winter, snowing, top of the mountain', 'example_inputs/pengwei.jpg', 4, 4, 6273700647573240909, 1 ], [ 'portrait, candle light', 'example_inputs/pengwei.jpg', 4, 4, 17522759474323955700, 1 ], [ 'profile shot dark photo of a 25-year-old male with smoke escaping from his mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', # noqa E501 'example_inputs/pengwei.jpg', 4, 4, 17733156847328193625, 1 ], [ 'American Comics, 1boy', 'example_inputs/pengwei.jpg', 1, 4, 13223174453874179686, 1 ], [ 'portrait, pixar', 'example_inputs/pengwei.jpg', 1, 4, 9445036702517583939, 1 ], ] gr.Examples(examples=example_inps, inputs=[prompt, id_image, start_step, guidance, seed, true_cfg], label='fake CFG', cache_examples='lazy', outputs=[output_image, seed_output], fn=generate_image) example_inps = [ [ 'portrait, made of ice sculpture', 'example_inputs/lecun.jpg', 1, 1, 7717391560531186077, 5 ], ] gr.Examples(examples=example_inps, inputs=[prompt, id_image, start_step, guidance, seed, true_cfg], label='true CFG', cache_examples='lazy', outputs=[output_image, seed_output], fn=generate_image) generate_btn.click( fn=generate_image, inputs=[prompt, id_image, start_step, guidance, seed, true_cfg, width, height, num_steps, id_weight, neg_prompt, timestep_to_start_cfg, max_sequence_length], outputs=[output_image, seed_output, intermediate_output], ) return demo if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev") parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'), help="currently only support flux-dev") parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use") parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use") parser.add_argument("--port", type=int, default=8080, help="Port to use") parser.add_argument("--dev", action='store_true', help="Development mode") parser.add_argument("--pretrained_model", type=str, help='for development') args = parser.parse_args() import huggingface_hub huggingface_hub.login(os.getenv('HF_TOKEN')) demo = create_demo(args, args.name, args.device, args.offload) demo.launch()