File size: 11,379 Bytes
a477b7c
 
c47605f
 
a477b7c
ff74240
c47605f
455fa84
c47605f
a477b7c
48d8a07
a477b7c
309caec
455fa84
 
c9be6b5
455fa84
 
309caec
a6221a5
 
 
 
 
7d7c12f
 
577fccd
a6221a5
 
3598204
ff74240
a477b7c
ec6bf88
309caec
a477b7c
 
6adc265
dce2cf7
6adc265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6bf88
a477b7c
 
 
 
 
ec6bf88
a477b7c
 
 
 
 
455fa84
 
 
 
 
 
 
 
 
 
 
ec6bf88
 
 
 
455fa84
 
 
 
 
 
 
 
 
ec6bf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0988533
 
 
 
 
 
 
 
a819640
cdde014
 
 
 
 
 
 
 
 
b9b37d9
 
 
 
 
447f799
 
 
 
 
 
 
ec6bf88
 
 
 
 
455fa84
 
 
 
 
 
 
 
 
 
 
 
 
ec6bf88
455fa84
ec6bf88
 
 
 
455fa84
 
 
 
 
 
 
 
 
c47605f
 
a477b7c
ec6bf88
c9be6b5
 
 
455fa84
a477b7c
 
 
cd6e4d4
 
 
 
 
 
 
a477b7c
c47605f
 
 
41ed228
c9be6b5
 
 
a477b7c
8274d84
de4b5b9
c47605f
 
c9be6b5
48d8a07
a477b7c
 
 
 
 
 
 
ce66c61
 
 
6adc265
ce66c61
 
a477b7c
6adc265
a477b7c
c4979f5
f7623e8
577fccd
 
455fa84
577fccd
34bd01c
a477b7c
 
 
 
 
 
 
a4d6be0
77d013c
54e5650
7d7c12f
77d013c
1d46982
 
9235039
a477b7c
7d7c12f
084cb82
9235039
 
 
a477b7c
455fa84
a477b7c
1d46982
7d7c12f
1d46982
 
 
577fccd
084cb82
c4979f5
a477b7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr
from folium import Map
import numpy as np
from ast import literal_eval
import pandas as pd
import os

import asyncio
from gradio_folium import Folium
import folium
from folium.plugins import Fullscreen
from huggingface_hub import InferenceClient
from geopy.geocoders import Nominatim
from collections import OrderedDict
from geopy.adapters import AioHTTPAdapter

import nest_asyncio
nest_asyncio.apply()

from examples import (
    description_sf,
    output_example_sf,
    description_loire,
    output_example_loire,
    description_taiwan,
    output_example_taiwan,
    trip_examples
)

repo_id = "meta-llama/Meta-Llama-3-70B-Instruct"
llm_client = InferenceClient(model=repo_id, timeout=180, token=os.getenv("hf_token"))

end_sequence = "I hope that helps!"

def generate_key_points(text):
    prompt = f"""             
Please generate a set of key geographical points for the following description: {text}, as a json list of less than 10 dictionnaries with the following keys: 'name', 'description'.
ALWAYS precise the city and country in the 'name'. For instance do not only "name": "Notre Dame" as the name but "name": "Notre Dame, Paris, France".
Generally try to minimize the distance between locations. Always think of the transportation means that you want to use, and the timing: morning, afternoon, where to sleep.
Only generate two sections: 'Thought:' provides your rationale for generating the points, then you list the locations in 'Key points:'.
Then generate '{end_sequence}' to indicate the end of the response.

For instance:
Description: {description_sf}
Thought: {output_example_sf}
{end_sequence}

Description: {description_loire}
Thought: {output_example_loire}
{end_sequence}

Now begin. You can make the descriptions a bit more verbose than in the examples.

Description: {text}
Thought:"""
    return llm_client.text_generation(prompt, max_new_tokens=2000, stream=True, stop_sequences=[end_sequence])


def parse_llm_output(output):
    rationale = "Thought: " + output.split("Key points:")[0]
    key_points = output.split("Key points:")[1]
    output = key_points.replace("    ", "").replace(end_sequence, "").strip()
    parsed_output = literal_eval(output)
    dataframe = pd.DataFrame.from_dict(parsed_output)
    return dataframe, rationale


class AsyncLRUCache:
    def __init__(self, maxsize=100):
        self.cache = OrderedDict()
        self.maxsize = maxsize

    async def get(self, key):
        if key not in self.cache:
            return None
        self.cache.move_to_end(key)
        return self.cache[key]

    async def aset(self, key, value):
        self.set(key, value)

    def set(self, key, value):
        if key in self.cache:
            self.cache.move_to_end(key)
        self.cache[key] = value
        if len(self.cache) > self.maxsize:
            self.cache.popitem(last=False)

# Instantiate the cache
cache = AsyncLRUCache(maxsize=500)

preset_values = {
    "Fisherman's Wharf, San Francisco": {'lat': 37.808332, 'lon': -122.415715},
    'Ghirardelli Square, San Francisco': {'lat': 37.80587075, 'lon': -122.42294914207058},
    'Cable Car Museum, San Francisco': {'lat': 37.79476015, 'lon': -122.41185284314184},
    'Union Square, San Francisco': {'lat': 37.7875138, 'lon': -122.407159},
    'Chinatown, San Francisco': {'lat': 37.7943011, 'lon': -122.4063757},
    'Coit Tower, San Francisco': {'lat': 37.80237905, 'lon': -122.40583435461313},
    'Chinatown, San Francisco, California': {'lat': 37.7943011, 'lon': -122.4063757},
    'Chinatown, New York City, New York': {'lat': 40.7164913, 'lon': -73.9962504},
    'Chinatown, Los Angeles, California': {'lat': 34.0638402, 'lon': -118.2358676},
    'Chinatown, Philadelphia, Pennsylvania': {'lat': 39.9534461, 'lon': -75.1546218},
    'Chinatown, Chicago, Illinois': {'lat': 41.8516579, 'lon': -87.6331383},
    'Chinatown, Boston, Massachusetts': {'lat': 42.3513291, 'lon': -71.0626228},
    'Chinatown, Honolulu, Hawaii': {'lat': 21.3129031, 'lon': -157.8628003},
    'Chinatown, Seattle, Washington': {'lat': 47.5980601, 'lon': -122.3245246},
    'Chinatown, Portland, Oregon': {'lat': 45.5251092, 'lon': -122.6744481},
    'Chinatown, Las Vegas, Nevada': {'lat': 36.2823279, 'lon': -115.3310655},
    'Taipei, Taiwan': {'lat': 25.0375198, 'lon': 121.5636796},
    'Hualien, Taiwan': {'lat': 23.9913421, 'lon': 121.6197276},
    'Taitung, Taiwan': {'lat': 22.7553667, 'lon': 121.1506},
    'Kaohsiung, Taiwan': {'lat': 22.6203348, 'lon': 120.3120375},
    'Tainan, Taiwan': {'lat': 22.9912348, 'lon': 120.184982},
    'Chiayi, Taiwan': {'lat': 23.4591664, 'lon': 120.2930004},
    'Taichung, Taiwan': {'lat': 24.163162, 'lon': 120.6478282},
    'Hsinchu, Taiwan': {'lat': 24.8066333, 'lon': 120.9686833},
    'Château de Blois, Blois, France': {'lat': 47.650198, 'lon': 1.426256515186913}, 
    'Château de Chambord, Chambord, France': {'lat': 47.61606945, 'lon': 1.5170501827851928},
    'Château de Cheverny, Cheverny, France': {'lat': 47.50023105, 'lon': 1.4580181089595223},
    'Château de Chaumont-sur-Loire, Chaumont-sur-Loire, France': {'lat': 47.479146, 'lon': 1.181523652578578},
    'Château de Chenonceau, Chenonceau, France': {'lat': 47.32461905, 'lon': 1.070403778072624},
    "Château d'Amboise, Amboise, France": {'lat': 47.41362905, 'lon': 0.9859718927689629},
    'Château de Villandry, Villandry, France': {'lat': 47.34056095, 'lon': 0.5146088880523084},
    "Château d'Azay-le-Rideau, Azay-le-Rideau, France": {'lat': 47.25904985, 'lon': 0.465756301165524},
    "Château d'Ussé, Rigny-Ussé, France": {'lat': 47.249807, 'lon': 0.2909891848913879},
    'Groningen, Netherlands': {'lat': 53.2190652, 'lon': 6.5680077},
    'Osnabrück, Germany': {'lat': 52.37265095, 'lon': 8.161049572938472},
    'Erfurt, Germany': {'lat': 50.9777974, 'lon': 11.0287364},
    'Nuremberg, Germany': {'lat': 49.453872, 'lon': 11.077298},
    'Innsbruck, Austria': {'lat': 47.2654296, 'lon': 11.3927685},
    'Embarcadero, San Francisco': {'lat': 37.7928637, 'lon': -122.396912},
    'Pier 39, San Francisco': {'lat': 37.808703, 'lon': -122.410116},
    'Palace of Fine Arts, San Francisco': {'lat': 37.80291855, 'lon': -122.44840286435331},
    'Crissy Field, San Francisco': {'lat': 37.80459605, 'lon': -122.4666072420753},
    'Golden Gate Bridge, San Francisco': {'lat': 37.8302731, 'lon': -122.4798443},
    'Fort Point National Historic Site, San Francisco': {'lat': 37.81045495, 'lon': -122.47713831312802},
    'Presidio of San Francisco': {'lat': 37.798745600000004, 'lon': -122.46458892410745}
}
for key, value in preset_values.items():
    cache.set(key, value)


async def geocode_address(address):
    # Check if the result is in cache
    cached_location = await cache.get(address)
    if cached_location:
        return cached_location

    # If not in cache, perform the geolocation request
    async with Nominatim(
        user_agent="HF-trip-planner",
        adapter_factory=AioHTTPAdapter,
    ) as geolocator:
        location = await geolocator.geocode(address, timeout=10)
        if location:
            coords = {'lat': location.latitude, "lon": location.longitude}
            # Save the result in cache for future use
            await cache.aset(address, coords)
            return coords
        return None

async def ageocode_addresses(addresses):
    tasks = [geocode_address(address) for address in addresses]
    locations = await asyncio.gather(*tasks)
    return locations

def geocode_addresses(addresses):
    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(ageocode_addresses(addresses))
    return result


def create_map_from_markers(dataframe):
    coordinates = geocode_addresses(dataframe["name"])
    print({name: coordinates[i] for i, name in enumerate(dataframe["name"].to_list())})
    dataframe["lat"] = [coords["lat"] if coords else None for coords in coordinates]
    dataframe["lon"] = [coords["lon"] if coords else None for coords in coordinates]

    f_map = Map(
        location=[dataframe["lat"].mean(), dataframe["lon"].mean()],
        zoom_start=5,
        tiles=folium.TileLayer(
            tiles="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
            attr="Google",
            name="Google Maps",
            overlay=True,
            control=True,
        ),
    )
    for _, row in dataframe.iterrows():
        if np.isnan(row["lat"]) or np.isnan(row["lon"]):
            continue
        popup_message = f"<h4 style='color: #d53e2a;'>{row['name'].split(',')[0]}</h4><p style='font-weight:500'>{row['description']}</p>"
        popup_message += f"<a href='https://www.google.com/search?q={row['name']}' target='_blank'><b>Learn more about {row['name'].split(',')[0]}</b></a>"

        marker = folium.Marker(
            location=[row["lat"], row["lon"]],
            popup=folium.Popup(popup_message, max_width=200),
            icon=folium.Icon(color="yellow", icon="fa-circle-dot", prefix='fa'),
        )
        marker.add_to(f_map),
    
    Fullscreen(position='topright', title='Expand me', title_cancel='Exit me', force_separate_button=True).add_to(f_map)

    bounds = [[row["lat"], row["lon"]] for _, row in dataframe.iterrows()]
    f_map.fit_bounds(bounds, padding=(100, 100))
    return f_map


def run_display(text):
    current_output = ""
    for output in generate_key_points(text):
        current_output += output
        yield None, "```text\n" + current_output + "\n```"
    current_output = current_output.replace("</s>", "")
    dataframe, _ = parse_llm_output(current_output)
    map = create_map_from_markers(dataframe)
    yield map, "```text\n" + current_output + "\n```"


def select_example(choice):
    output = trip_examples[choice]
    dataframe, _ = parse_llm_output(output)
    map = create_map_from_markers(dataframe)
    return choice, map, "```text\n" + output + "\n```"


with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue=gr.themes.colors.yellow,
        secondary_hue=gr.themes.colors.blue,
    )
) as demo:
    gr.Markdown("# 🗺️ AI Travel Planner 🏕️\nThis personal travel planner is based on Mixtral-8x7B, called through the Hugging Face API. Describe your ideal trip below, and let our AI assistant guide you!\n Beware, the model does not really have access to train or plane schedules, it is relying on general world knowledge for its propositions.")
    text = gr.Textbox(
        label="Describe your ideal trip:",
        value=description_taiwan,
    )
    button = gr.Button("Generate trip!")
            
    gr.Markdown("### LLM Output 👇")

    example_dataframe, _ = parse_llm_output(output_example_taiwan)
    display_thoughts = gr.Markdown("```text\n" + output_example_sf + "\n```")

    gr.Markdown("_Click the markers on the map map to display information about the places._")
    # Get initial map
    starting_map = create_map_from_markers(example_dataframe)
    map = Folium(value=starting_map, height=600, label="Chosen locations")

    # Trip examples
    clickable_examples = gr.Dropdown(choices=trip_examples.keys(), label="Try another example:", value=description_taiwan)

    # Dynamics
    button.click(run_display, inputs=[text], outputs=[map, display_thoughts])
    clickable_examples.input(
        select_example, clickable_examples, outputs=[text, map, display_thoughts]
    )

if __name__ == "__main__":
    demo.launch()