import torch print(f"Is CUDA available: {torch.cuda.is_available()}") # True if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") STYLE = """ .container { width: 100%; display: grid; align-items: center; margin: 0!important; } .prose ul ul { margin: 0!important; } .tree { padding: 0px; margin: 0!important; box-sizing: border-box; font-size: 16px; width: 100%; height: auto; text-align: center; } .tree ul { padding-top: 20px; position: relative; transition: .5s; margin: 0!important; } .tree li { display: inline-table; text-align: center; list-style-type: none; position: relative; padding: 10px; transition: .5s; } .tree li::before, .tree li::after { content: ''; position: absolute; top: 0; right: 50%; border-top: 1px solid #ccc; width: 51%; height: 10px; } .tree li::after { right: auto; left: 50%; border-left: 1px solid #ccc; } .tree li:only-child::after, .tree li:only-child::before { display: none; } .tree li:only-child { padding-top: 0; } .tree li:first-child::before, .tree li:last-child::after { border: 0 none; } .tree li:last-child::before { border-right: 1px solid #ccc; border-radius: 0 5px 0 0; -webkit-border-radius: 0 5px 0 0; -moz-border-radius: 0 5px 0 0; } .tree li:first-child::after { border-radius: 5px 0 0 0; -webkit-border-radius: 5px 0 0 0; -moz-border-radius: 5px 0 0 0; } .tree ul ul::before { content: ''; position: absolute; top: 0; left: 50%; border-left: 1px solid #ccc; width: 0; height: 20px; } .tree li a { border: 1px solid #ccc; padding: 10px; display: inline-grid; border-radius: 5px; text-decoration-line: none; border-radius: 5px; transition: .5s; } .tree li a span { border: 1px solid #ccc; border-radius: 5px; color: #666; padding: 8px; font-size: 12px; text-transform: uppercase; letter-spacing: 1px; font-weight: 500; } /*Hover-Section*/ .tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a { background: #c8e4f8; color: #000; border: 1px solid #94a0b4; } .tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before { border-color: #94a0b4; } """ from transformers import GPT2Tokenizer, AutoModelForCausalLM, AutoTokenizer import numpy as np tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") tokenizer.pad_token_id = tokenizer.eos_token_id print("Loading finished.") def generate_html(token, node): """Recursively generate HTML for the tree.""" html_content = f"
  • {token} " html_content += node["table"] if node["table"] is not None else "" html_content += "" if len(node["children"].keys()) > 0: html_content += "" html_content += "
  • " return html_content def generate_markdown_table(scores, top_k=4, chosen_tokens=None): markdown_table = """ """ for token_idx in np.argsort(scores)[-top_k:]: token = tokenizer.decode([token_idx]) style = "" if chosen_tokens and token in chosen_tokens: style = "background-color:red" markdown_table += f""" """ markdown_table += """
    Token Probability
    {token} {scores[token_idx]}
    """ return markdown_table def display_tree(scores, sequences, beam_indices): display = """
    """ return display def get_tables(input_text, number_steps, number_beams): inputs = tokenizer([input_text], return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=number_steps, num_beams=number_beams, num_return_sequences=number_beams, return_dict_in_generate=True, output_scores=True, top_k=5, temperature=1.0, do_sample=True, ) tables = display_tree( outputs.scores, outputs.sequences[:, len(inputs) :], outputs.beam_indices[:, : -len(inputs)], ) return tables import gradio as gr with gr.Blocks( theme=gr.themes.Soft( text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green ), css=STYLE, ) as demo: text = gr.Textbox(label="Sentence to decode from🪶", value="Today is") steps = gr.Slider(label="Number of steps", minimum=1, maximum=10, step=1, value=4) beams = gr.Slider(label="Number of beams", minimum=1, maximum=3, step=1, value=3) button = gr.Button() out = gr.Markdown(label="Output") button.click(get_tables, inputs=[text, steps, beams], outputs=out) demo.launch()