File size: 4,016 Bytes
f893280
 
 
 
 
 
 
42a1f46
f893280
42a1f46
f893280
42a1f46
 
 
 
 
 
f893280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a1f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f893280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a1f46
f893280
 
42a1f46
f893280
 
 
 
 
 
42a1f46
f893280
42a1f46
f893280
 
42a1f46
f893280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a1f46
f893280
 
 
 
 
 
42a1f46
f893280
 
 
 
 
 
 
 
42a1f46
f893280
 
 
 
 
 
42a1f46
f893280
 
 
42a1f46
f893280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a1f46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-schnell"

torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

try:
    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    pipe = pipe.to(device)
except Exception as e:
    print(f"Error loading model: {e}")
    raise

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    try:
        generator = torch.Generator(device=device).manual_seed(seed)
        
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        
        return image, seed
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Text-to-Image Generation")

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0, variant="primary")

        result = gr.Image(label="Generated Image", show_label=True)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)