import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model # changes to be made here from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, evaluation_metric:str, subset:str) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path, evaluation_metric) # print(raw_data) # raise Exception("stop") all_data_json = [v.to_dict(subset=subset) for v in raw_data] df = pd.DataFrame.from_records(all_data_json) # changes to be made here if subset == "datasets": df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) elif subset == "med_safety": df = df.sort_values(by=["Harmfulness Score"], ascending=True) elif subset == "open_ended": df = df.sort_values(by=["ELO"], ascending=False) elif subset == "medical_summarization": df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False) elif subset == "aci": df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False) elif subset == "soap": df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False) cols = list(set(df.columns).intersection(set(cols))) df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return raw_data, df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model_name"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") # changes to be made here data[EvalQueueColumn.closed_ended_status.name] = data["status"]["closed-ended"] data[EvalQueueColumn.open_ended_status.name] = data["status"]["open-ended"] data[EvalQueueColumn.med_safety_status.name] = data["status"]["med-safety"] data[EvalQueueColumn.medical_summarization_status.name] = data["status"]["medical-summarization"] data[EvalQueueColumn.note_generation_status.name] = data["status"]["note-generation"] all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) # print(data) data[EvalQueueColumn.model.name] = make_clickable_model(data["model_name"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") data[EvalQueueColumn.closed_ended_status.name] = data["status"]["closed-ended"] data[EvalQueueColumn.open_ended_status.name] = data["status"]["open-ended"] data[EvalQueueColumn.med_safety_status.name] = data["status"]["med-safety"] data[EvalQueueColumn.medical_summarization_status.name] = data["status"]["medical-summarization"] data[EvalQueueColumn.note_generation_status.name] = data["status"]["note-generation"] all_evals.append(data) # breakpoint() pending_list = [] running_list = [] finished_list = [] for run in all_evals: # changes to be made here status_list = [run["status"]["closed-ended"], run["status"]["open-ended"], run["status"]["med-safety"], run["status"]["medical-summarization"], run["status"]["note-generation"]] # status_list = status_list if "RUNNING" in status_list: running_list.append(run) elif "PENDING" in status_list or "RERUN" in status_list: pending_list.append(run) else: finished_list.append(run) # breakpoint() df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]