# Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py import os import datetime import gradio as gr from dotenv import load_dotenv from huggingface_hub import HfApi from apscheduler.schedulers.background import BackgroundScheduler import utils FONT = ( """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">""" ) TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>""" HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>""" EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>.""" EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>""" HF_REPO_ID = "macrocosm-os/pretraining-leaderboard" SECONDS_PER_BLOCK = 12 load_dotenv() HF_TOKEN = os.environ.get("HF_TOKEN", None) API = HfApi(token=HF_TOKEN) def get_next_update_div(current_block: int, next_update_block: int) -> str: now = datetime.datetime.now() blocks_to_go = next_update_block - current_block next_update_time = now + datetime.timedelta( seconds=blocks_to_go * SECONDS_PER_BLOCK ) delta = next_update_time - now return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>""" def get_last_updated_div() -> str: return f"""<div>Last Updated: {datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>""" def restart_space(): API.restart_space(repo_id=HF_REPO_ID, token=HF_TOKEN) def main(): # To avoid leaderboard failures, infinitely try until we get all data # needed to populate the dashboard state_vars = utils.load_state_vars() model_data = state_vars["model_data"] vali_runs = state_vars["vali_runs"] scores = state_vars["scores"] validator_df = state_vars["validator_df"] benchmarks = state_vars.get("benchmarks", None) benchmark_timestamp = state_vars.get("benchmark_timestamp", None) demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}") with demo: gr.HTML(FONT) gr.HTML(TITLE) gr.HTML(HEADER) # TODO: Re-enable once ""SubtensorModule.BlocksSinceEpoch" not found" issue is resolved. # gr.HTML(value=get_next_update_div(current_block, next_epoch_block)) gr.Label( value={ f"{c.namespace}/{c.name} ({c.commit[0:8]}) · (τ{round(c.emission, 2):,})": c.incentive for c in model_data if c.incentive }, num_top_classes=10, ) if benchmarks is not None: with gr.Accordion("Top Model Benchmarks"): gr.components.Dataframe(benchmarks) gr.HTML("""<div>PPL computed using a stride of 512. See <a href='https://github.com/macrocosm-os/pretraining/blob/dev/scripts/run_benchmarks.py'>here</a> for the full code.</div>""") gr.HTML(f"""<div>Last Updated: {benchmark_timestamp.strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>""") with gr.Accordion("Evaluation Stats"): gr.HTML(EVALUATION_HEADER) show_stale = gr.Checkbox(label="Show Stale", interactive=True) leaderboard_table = gr.components.Dataframe( value=utils.leaderboard_data(model_data, scores, show_stale.value), headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"], datatype=["markdown", "number", "number", "number", "number", "number"], elem_id="leaderboard-table", interactive=False, visible=True, ) gr.HTML(EVALUATION_DETAILS) show_stale.change( lambda stale: utils.leaderboard_data(model_data, scores, stale), inputs=[show_stale], outputs=leaderboard_table, ) gr.LinePlot( utils.get_losses_over_time(vali_runs), x="timestamp", x_title="Date", y="best_loss", y_title="Average Loss", tooltip="best_loss", interactive=True, visible=True, width=1024, title="Best Average Loss Over Time", ) with gr.Accordion("Validator Stats"): gr.components.Dataframe( utils.make_validator_dataframe(validator_df, model_data), interactive=False, visible=True, ) gr.HTML(value=get_last_updated_div()) scheduler = BackgroundScheduler() scheduler.add_job( restart_space, "interval", seconds=60 * 30 ) # restart every 15 minutes scheduler.start() demo.launch() main()