Spaces:
Sleeping
Sleeping
File size: 9,960 Bytes
8fa594d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import nltk
import sklearn_crfsuite
from sklearn_crfsuite import metrics
from nltk.stem import LancasterStemmer
import numpy as np
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import re
import gradio as gr
lancaster = LancasterStemmer()
class CRF_POS_Tagger:
def __init__(self):
self.corpus = nltk.corpus.brown.tagged_sents(tagset='universal')
self.corpus = [[(word.lower(), tag) for word, tag in sentence] for sentence in self.corpus]
self.actual_tag = []
self.predicted_tag = []
self.prefixes = [
"a", "anti", "auto", "bi", "co", "dis", "en", "em", "ex", "in", "im",
"inter", "mis", "non", "over", "pre", "re", "sub", "trans", "un", "under"
]
self.suffixes = [
"able", "ible", "al", "ance", "ence", "dom", "er", "or", "ful", "hood",
"ic", "ing", "ion", "tion", "ity", "ty", "ive", "less", "ly", "ment",
"ness", "ous", "ship", "y", "es", "s"
]
self.prefix_pattern = f"^({'|'.join(self.prefixes)})"
self.suffix_pattern = f"({'|'.join(self.suffixes)})$"
self.X = [[self.word_features(sentence, i) for i in range(len(sentence))] for sentence in self.corpus]
self.y = [[postag for _, postag in sentence] for sentence in self.corpus]
self.split = int(0.8 * len(self.X))
self.X_train = self.X[:self.split]
self.y_train = self.y[:self.split]
self.X_test = self.X[self.split:]
self.y_test = self.y[self.split:]
self.crf_model = sklearn_crfsuite.CRF(algorithm='lbfgs', c1=0.1, c2=0.1, max_iterations=100, all_possible_transitions=True)
self.train()
def word_splitter(self, word):
prefix = ""
stem = word
suffix = ""
prefix_match = re.match(self.prefix_pattern, word)
if prefix_match:
prefix = prefix_match.group(1)
stem = word[len(prefix):]
suffix_match = re.search(self.suffix_pattern, stem)
if suffix_match:
suffix = suffix_match.group(1)
stem = stem[: -len(suffix)]
return prefix, stem, suffix
# Define a function to extract features for each word in a sentence
def word_features(self, sentence, i):
word = sentence[i][0]
prefix, stem, suffix = self.word_splitter(word)
features = {
'word': word,
'prefix': prefix,
# 'stem': stem,
'stem': lancaster.stem(word),
'suffix': suffix,
'position': i,
'is_first': i == 0, #if the word is a first word
'is_last': i == len(sentence) - 1, #if the word is a last word
# 'is_capitalized': word[0].upper() == word[0],
'is_all_caps': word.isupper(), #word is in uppercase
'is_all_lower': word.islower(), #word is in lowercase
'prefix-1': word[0],
'prefix-2': word[:2],
'prefix-3': word[:3],
'suffix-1': word[-1],
'suffix-2': word[-2:],
'suffix-3': word[-3:],
'prefix-un': word[:2] == 'un', #if word starts with un
'prefix-re': word[:2] == 're', #if word starts with re
'prefix-over': word[:4] == 'over', #if word starts with over
'prefix-dis': word[:4] == 'dis', #if word starts with dis
'prefix-mis': word[:4] == 'mis', #if word starts with mis
'prefix-pre': word[:4] == 'pre', #if word starts with pre
'prefix-non': word[:4] == 'non', #if word starts with non
'prefix-de': word[:3] == 'de', #if word starts with de
'prefix-in': word[:3] == 'in', #if word starts with in
'prefix-en': word[:3] == 'en', #if word starts with en
'suffix-ed': word[-2:] == 'ed', #if word ends with ed
'suffix-ing': word[-3:] == 'ing', #if word ends with ing
'suffix-es': word[-2:] == 'es', #if word ends with es
'suffix-ly': word[-2:] == 'ly', #if word ends with ly
'suffix-ment': word[-4:] == 'ment', #if word ends with ment
'suffix-er': word[-2:] == 'er', #if word ends with er
'suffix-ive': word[-3:] == 'ive',
'suffix-ous': word[-3:] == 'ous',
'suffix-ness': word[-4:] == 'ness',
'ends_with_s': word[-1] == 's',
'ends_with_es': word[-2:] == 'es',
'has_hyphen': '-' in word, #if word has hypen
'is_numeric': word.isdigit(), #if word is in numeric
'capitals_inside': word[1:].lower() != word[1:],
'is_title_case': word.istitle(), #if first letter is in uppercase
}
if i > 0:
# prev_word, prev_postag = sentence[i-1]
prev_word = sentence[i-1][0]
prev_prefix, prev_stem, prev_suffix = self.word_splitter(prev_word)
features.update({
'prev_word': prev_word,
# 'prev_postag': prev_postag,
'prev_prefix': prev_prefix,
'prev_stem': lancaster.stem(prev_word),
'prev_suffix': prev_suffix,
'prev:is_all_caps': prev_word.isupper(),
'prev:is_all_lower': prev_word.islower(),
'prev:is_numeric': prev_word.isdigit(),
'prev:is_title_case': prev_word.istitle(),
})
if i < len(sentence)-1:
next_word = sentence[i-1][0]
next_prefix, next_stem, next_suffix = self.word_splitter(next_word)
features.update({
'next_word': next_word,
'next_prefix': next_prefix,
'next_stem': lancaster.stem(next_word),
'next_suffix': next_suffix,
'next:is_all_caps': next_word.isupper(),
'next:is_all_lower': next_word.islower(),
'next:is_numeric': next_word.isdigit(),
'next:is_title_case': next_word.istitle(),
})
return features
def train(self):
self.crf_model.fit(self.X_train, self.y_train)
def predict(self, X_test):
return self.crf_model.predict(X_test)
def accuracy(self, test_data):
X_test, y_test = zip(*test_data)
y_pred = self.predict(X_test)
self.actual_tag.extend([item for sublist in y_test for item in sublist])
self.predicted_tag.extend([item for sublist in y_pred for item in sublist])
return metrics.flat_accuracy_score(y_test, y_pred)
def cross_validation(self, data):
accuracies = []
for i in range(5):
n1 = int(i / 5.0 * len(data))
n2 = int((i + 1) / 5.0 * len(data))
test_data = data[n1:n2]
train_data = data[:n1] + data[n2:]
self.train(train_data)
acc = self.accuracy(test_data)
accuracies.append(acc)
return accuracies, sum(accuracies) / 5.0
def con_matrix(self):
self.labels = np.unique(self.actual_tag)
conf_matrix = confusion_matrix(self.actual_tag, self.predicted_tag, labels=self.labels)
plt.figure(figsize=(10, 7))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=self.labels, yticklabels=self.labels)
plt.xlabel('Predicted Tags')
plt.ylabel('Actual Tags')
plt.title('Confusion Matrix Heatmap')
plt.savefig("Confusion_matrix.png")
plt.show()
return conf_matrix
def per_pos_accuracy(self, conf_matrix):
print("Per Tag Precision, Recall, and F-Score:")
per_tag_metrics = {}
for i, tag in enumerate(self.labels):
true_positives = conf_matrix[i, i]
false_positives = np.sum(conf_matrix[:, i]) - true_positives
false_negatives = np.sum(conf_matrix[i, :]) - true_positives
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
beta_0_5 = 0.5
beta_2 = 2.0
f0_5_score = (1 + beta_0_5**2) * (precision * recall) / ((beta_0_5**2 * precision) + recall) if (precision + recall) > 0 else 0
f2_score = (1 + beta_2**2) * (precision * recall) / ((beta_2**2 * precision) + recall) if (precision + recall) > 0 else 0
per_tag_metrics[tag] = {
'Precision': precision,
'Recall': recall,
'f1-Score': f1_score,
'f05-Score': f0_5_score,
'f2-Score': f2_score
}
print(f"{tag}: Precision = {precision:.2f}, Recall = {recall:.2f}, f1-Score = {f1_score:.2f}, "
f"f05-Score = {f0_5_score:.2f}, f2-Score = {f2_score:.2f}")
def tagging(self, input):
sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input.strip())).split()
sentence_list = [[word] for word in sentence]
features = [self.word_features(sentence_list, i) for i in range(len(sentence_list))]
predicted_tags = self.crf_model.predict([features])
output = "".join(f"{sentence[i]}[{predicted_tags[0][i]}] " for i in range(len(sentence)))
return output
tagger = CRF_POS_Tagger()
interface = gr.Interface(fn = tagger.tagging,
inputs = "text",
outputs = "text",
title = "CRF POS Tagger",
description = "CS626 Assignment 1b by 24M0797, 24M0798, 24M0815, 24M0833")
interface.launch(inline = False) |