Spaces:
Sleeping
Sleeping
File size: 11,513 Bytes
0515619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import numpy as np
import math
import nltk
import matplotlib.pyplot as plt
import re
import gradio as gr
from collections import Counter, defaultdict
from sklearn.model_selection import KFold
from sklearn import metrics
nltk.download('brown')
nltk.download('universal_tagset')
class HMM:
def __init__(self):
self.tagged_sentences = nltk.corpus.brown.tagged_sents(tagset='universal')
self.tagset = ['.', 'ADJ', 'ADP', 'ADV', 'CONJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PRT', 'VERB', 'X']
self.start_token = '^'
self.end_token = '$'
self.tagged_sentences = [[(self.start_token, self.start_token)] + sentence + [(self.end_token, self.end_token)] for sentence in self.tagged_sentences]
self.tagged_sentences = [[(word.lower(),tag) for word, tag in sentence] for sentence in self.tagged_sentences]
def train(self):
tagged_sent = np.array(self.tagged_sentences,dtype='object')
y_pred = []
y_true = []
train = (int)(0.8*len(tagged_sent))
train_sentences = tagged_sent[:train]
test_sentences = tagged_sent[train:]
tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)
for sentence in test_sentences:
untaggedWords = [word for word,tag in sentence]
prediction = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
for i in range(1,len(prediction)-1):
y_pred.append(prediction[i])
y_true.append(sentence[i][1])
f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
print(f"Precision = {precision:.2f}, Recall = {recall:.2f}, f05-Score = {f05_Score:.2f}, f1-Score = {f1_Score:.2f}, f2-Score = {f2_Score:.2f}")
return tagsCount,wordTagMapping,tagTagMapping
def viterbi(self,untaggedWords,tagsCount,wordTagMapping,tagTagMapping):
sent_len = len(untaggedWords)
# taglist = []
prev, curr, path = defaultdict(Counter), defaultdict(Counter), defaultdict(Counter)
prev = {tag: 0.0 for tag in tagsCount}
prev[self.start_token] = 1.0
path[0][self.start_token] = 1.0
for i in range(1,sent_len-1):
word = untaggedWords[i]
# max_prev_tag = max(prev, key=prev.get)
# taglist.append(max_prev_tag)
for tag in tagsCount:
curr[tag] = float('-inf')
# lprob = prev[max_prev_tag] + math.log(lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(transition_probability(max_prev_tag,tag,tagsCount,tagTagMapping))
# if lprob>curr[tag]:
# curr[tag] = lprob
# path[i][tag] = max_prev_tag
for prev_tag in tagsCount:
lprob = prev[prev_tag] + math.log(self.lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(self.transition_probability(prev_tag,tag,tagsCount,tagTagMapping))
if lprob>curr[tag]:
curr[tag] = lprob
path[i][tag] = prev_tag
for tag in tagsCount:
prev[tag] = curr[tag]
# max_prev_tag = max(prev, key=prev.get)
# taglist.append(max_prev_tag)
# taglist.append('$')
taglist = ['$' for i in range(sent_len)]
for tag in tagsCount:
if curr[tag] > curr[taglist[sent_len-2]]:
taglist[sent_len-2] = tag
for i in range(sent_len-3,0,-1):
taglist[i] = path[i+1][taglist[i+1]]
taglist[0] = self.start_token
return taglist
def mapping(self, sentences):
word_tag_pairs = [(word, tag) for sentence in sentences for word, tag in sentence]
tagsCount = Counter(tag for _,tag in word_tag_pairs)
wordTagMapping = defaultdict(Counter)
for word, tag in word_tag_pairs:
wordTagMapping[word][tag]+=1
tagTagMapping = defaultdict(Counter)
for sentence in sentences:
for i in range(len(sentence)-1):
tagTagMapping[sentence[i][1]][sentence[i+1][1]]+=1
return tagsCount,wordTagMapping,tagTagMapping
def transition_probability(self,curr,next,tagsCount,tagTagMapping):
currToNextCount = tagTagMapping[curr][next]
currCount = tagsCount[curr]
probability = (currToNextCount) / (currCount)
return 10**-9 if probability == 0 else probability
def lexical_probability(self,word,tag,tagsCount,wordTagMapping):
wordTagCount = wordTagMapping[word][tag]
tagCount = tagsCount[tag]
probability = (wordTagCount+1)/(tagCount+len(wordTagMapping)) # Adding Laplace Smoothing
return probability
def cross_validation(self, tagged_sentences):
kfold = KFold(n_splits=5, shuffle=True, random_state=1)
tagged_sent = np.array(tagged_sentences,dtype='object')
y_pred_list = []
y_true_list = []
for fold, (train, test) in enumerate(kfold.split(tagged_sent)):
train_sentences = tagged_sent[train]
test_sentences = tagged_sent[test]
tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)
y_pred = []
y_true = []
for sentence in test_sentences:
untaggedWords = [word for word,_ in sentence]
pred_taglist = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
for i in range(1,len(pred_taglist)-1):
y_pred.append(pred_taglist[i])
y_true.append(sentence[i][1])
y_pred_list.append(np.array(y_pred))
y_true_list.append(np.array(y_true))
accuracy = metrics.accuracy_score(y_true_list[-1],y_pred_list[-1],normalize=True)
print(f'Fold {fold + 1} Accuracy: {accuracy}')
f05_Score, f1_Score, f2_Score, precision, recall = 0, 0, 0, 0, 0
for i in range(5):
precision += metrics.precision_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
recall += metrics.recall_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
f05_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=0.5,average='weighted',zero_division=0)
f1_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=1,average='weighted',zero_division=0)
f2_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=2,average='weighted',zero_division=0)
precision = precision/5.0
recall = recall/5.0
f05_Score = f05_Score/5.0
f1_Score = f1_Score/5.0
f2_Score = f2_Score/5.0
print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
self.per_pos_report(y_true_list,y_pred_list)
self.confusion_matrix(y_true_list,y_pred_list)
def confusion_matrix(self,y_true_list,y_pred_list):
total = 0.0
for y_true,y_pred in zip(y_true_list,y_pred_list):
cm = metrics.confusion_matrix(y_true,y_pred,labels=self.tagset)
total += cm
matrix = total/len(y_true_list)
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
plt.subplots(figsize=(12,10))
plt.xticks(np.arange(len(self.tagset)), self.tagset)
plt.yticks(np.arange(len(self.tagset)), self.tagset)
for i in range(normalized_matrix.shape[0]):
for j in range(normalized_matrix.shape[1]):
plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.Greens)
plt.colorbar()
plt.savefig('Confusion_Matrix.png')
def per_pos_report(self,y_true_list,y_pred_list):
report, support = 0, 0
for y_true,y_pred in zip(y_true_list,y_pred_list):
cr = metrics.classification_report(y_true,y_pred,labels=self.tagset,zero_division=0)
cr = cr.replace('macro avg', 'MacroAvg').replace('micro avg', 'MicroAvg').replace('weighted avg', 'WeightedAvg')
rows = cr.split('\n')
tags , reportValues , supportValues = [], [], []
for row in rows[1:]:
row = row.strip().split()
if len(row) < 2:
continue
tagScores = [float(j) for j in row[1: len(row) - 1]]
supportValues.append(int(row[-1]))
tags.append(row[0])
reportValues.append(tagScores)
report += np.array(reportValues)
support += np.array(supportValues)
report = report/5.0
support = support/5.0
xlabels = ['Precision', 'Recall', 'F1 Score']
ylabels = ['{0}[{1}]'.format(tags[i], sup) for i, sup in enumerate(support)]
_, ax = plt.subplots(figsize=(18,10))
ax.xaxis.set_tick_params()
ax.yaxis.set_tick_params()
plt.imshow(report, aspect='auto',cmap=plt.cm.RdYlGn)
plt.xticks(np.arange(3), xlabels)
plt.yticks(np.arange(len(tags)), ylabels)
plt.colorbar()
for i in range(report.shape[0]):
for j in range(report.shape[1]):
plt.text(j, i, format(report[i, j], '.2f'), horizontalalignment="center", verticalalignment="center")
plt.savefig('Per_POS_Accuracy.png')
def doTagging(self,input_sentence,prevTagsCount,prevWordTagMapping,prevTagTagMapping):
input_sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input_sentence.strip()))
untaggedWords = input_sentence.lower().split()
untaggedWords = ['^'] + untaggedWords + ['$']
tags = self.viterbi(untaggedWords, prevTagsCount, prevWordTagMapping, prevTagTagMapping)
output_sentence = ''.join(f'{untaggedWords[i]}[{tags[i]}] ' for i in range(1,len(untaggedWords)-1))
return output_sentence
hmm = HMM()
hmm.cross_validation(hmm.tagged_sentences)
tagsCount,wordTagMapping,tagTagMapping = hmm.train()
# test_sent = "the united kingdom and the usa are on two sides of the atlantic"
def tagging(input_sentence):
return hmm.doTagging(input_sentence, tagsCount, wordTagMapping, tagTagMapping)
interface = gr.Interface(fn = tagging,
inputs = gr.Textbox(
label="Input Sentence",
placeholder="Enter your sentence here...",
),
outputs = gr.Textbox(
label="Tagged Output",
placeholder="Tagged sentence appears here...",
),
title = "Hidden Markov Model POS Tagger",
description = "CS626 Assignment 1A (Autumn 2024)",
theme=gr.themes.Soft())
interface.launch(inline = False, share = True) |