File size: 11,513 Bytes
0515619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import math
import nltk
import matplotlib.pyplot as plt
import re
import gradio as gr
from collections import Counter, defaultdict
from sklearn.model_selection import KFold
from sklearn import metrics

nltk.download('brown')
nltk.download('universal_tagset')

class HMM:
    def __init__(self):
        self.tagged_sentences = nltk.corpus.brown.tagged_sents(tagset='universal')
        self.tagset = ['.', 'ADJ', 'ADP', 'ADV', 'CONJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PRT', 'VERB', 'X']
        self.start_token = '^'
        self.end_token = '$'

        self.tagged_sentences = [[(self.start_token, self.start_token)] + sentence + [(self.end_token, self.end_token)] for sentence in self.tagged_sentences]
        self.tagged_sentences = [[(word.lower(),tag) for word, tag in sentence] for sentence in self.tagged_sentences]
    
    def train(self):
        tagged_sent = np.array(self.tagged_sentences,dtype='object')
        
        y_pred = []
        y_true = []
        
        train = (int)(0.8*len(tagged_sent))
        train_sentences = tagged_sent[:train]
        test_sentences = tagged_sent[train:]
        tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)
        
        for sentence in test_sentences:
            untaggedWords = [word for word,tag in sentence]
            prediction = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
            for i in range(1,len(prediction)-1):
                y_pred.append(prediction[i])
                y_true.append(sentence[i][1])

        f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
        f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
        f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
        precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
        recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)

        print(f"Precision = {precision:.2f}, Recall = {recall:.2f}, f05-Score = {f05_Score:.2f}, f1-Score = {f1_Score:.2f}, f2-Score = {f2_Score:.2f}")
        return tagsCount,wordTagMapping,tagTagMapping
    
    def viterbi(self,untaggedWords,tagsCount,wordTagMapping,tagTagMapping):
        sent_len = len(untaggedWords)
        # taglist = []

        prev, curr, path = defaultdict(Counter), defaultdict(Counter), defaultdict(Counter)
        prev = {tag: 0.0 for tag in tagsCount}
        prev[self.start_token] = 1.0
        path[0][self.start_token] = 1.0
        
        for i in range(1,sent_len-1):
            word = untaggedWords[i]
            # max_prev_tag = max(prev, key=prev.get)
            # taglist.append(max_prev_tag)
            for tag in tagsCount:
                curr[tag] = float('-inf')        
                # lprob = prev[max_prev_tag] + math.log(lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(transition_probability(max_prev_tag,tag,tagsCount,tagTagMapping))
                # if lprob>curr[tag]:
                #     curr[tag] = lprob
                #     path[i][tag] = max_prev_tag
                for prev_tag in tagsCount:
                    lprob = prev[prev_tag] + math.log(self.lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(self.transition_probability(prev_tag,tag,tagsCount,tagTagMapping))
                    if lprob>curr[tag]:
                        curr[tag] = lprob
                        path[i][tag] = prev_tag
            for tag in tagsCount:
                prev[tag] = curr[tag]

        # max_prev_tag = max(prev, key=prev.get)
        # taglist.append(max_prev_tag)
        # taglist.append('$')
        
        taglist = ['$' for i in range(sent_len)]
        for tag in tagsCount:
            if curr[tag] > curr[taglist[sent_len-2]]:
                taglist[sent_len-2] = tag
        for i in range(sent_len-3,0,-1):
            taglist[i] = path[i+1][taglist[i+1]]
        taglist[0] = self.start_token
        return taglist
    
    def mapping(self, sentences):
        word_tag_pairs = [(word, tag) for sentence in sentences for word, tag in sentence]
        tagsCount = Counter(tag for _,tag in word_tag_pairs)

        wordTagMapping = defaultdict(Counter)
        for word, tag in word_tag_pairs:
            wordTagMapping[word][tag]+=1
        
        tagTagMapping = defaultdict(Counter)
        for sentence in sentences:
            for i in range(len(sentence)-1):
                tagTagMapping[sentence[i][1]][sentence[i+1][1]]+=1
        return tagsCount,wordTagMapping,tagTagMapping

    def transition_probability(self,curr,next,tagsCount,tagTagMapping):
        currToNextCount = tagTagMapping[curr][next]
        currCount = tagsCount[curr]
        probability = (currToNextCount) / (currCount) 
        return 10**-9 if probability == 0 else probability

    def lexical_probability(self,word,tag,tagsCount,wordTagMapping):
        wordTagCount = wordTagMapping[word][tag]
        tagCount = tagsCount[tag]
        probability = (wordTagCount+1)/(tagCount+len(wordTagMapping))   # Adding Laplace Smoothing
        return probability

    def cross_validation(self, tagged_sentences):
        kfold = KFold(n_splits=5, shuffle=True, random_state=1)

        tagged_sent = np.array(tagged_sentences,dtype='object')
        y_pred_list = []
        y_true_list = []
        for fold, (train, test) in enumerate(kfold.split(tagged_sent)):
            train_sentences = tagged_sent[train]
            test_sentences = tagged_sent[test]
            tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)

            y_pred = []
            y_true = []

            for sentence in test_sentences:
                untaggedWords = [word for word,_ in sentence]
                pred_taglist = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
                for i in range(1,len(pred_taglist)-1):
                    y_pred.append(pred_taglist[i])
                    y_true.append(sentence[i][1])

            y_pred_list.append(np.array(y_pred))
            y_true_list.append(np.array(y_true))
            accuracy = metrics.accuracy_score(y_true_list[-1],y_pred_list[-1],normalize=True)
            print(f'Fold {fold + 1} Accuracy: {accuracy}')

        f05_Score, f1_Score, f2_Score, precision, recall = 0, 0, 0, 0, 0

        for i in range(5):
            precision += metrics.precision_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
            recall += metrics.recall_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
            f05_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=0.5,average='weighted',zero_division=0)
            f1_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=1,average='weighted',zero_division=0)
            f2_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=2,average='weighted',zero_division=0)

        precision = precision/5.0
        recall = recall/5.0
        f05_Score = f05_Score/5.0
        f1_Score = f1_Score/5.0
        f2_Score = f2_Score/5.0
    

        print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
        self.per_pos_report(y_true_list,y_pred_list)
        self.confusion_matrix(y_true_list,y_pred_list)

    def confusion_matrix(self,y_true_list,y_pred_list):
        total = 0.0
        for y_true,y_pred in zip(y_true_list,y_pred_list):
            cm = metrics.confusion_matrix(y_true,y_pred,labels=self.tagset)
            total += cm

        matrix = total/len(y_true_list)
        normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)

        plt.subplots(figsize=(12,10))
        plt.xticks(np.arange(len(self.tagset)), self.tagset)
        plt.yticks(np.arange(len(self.tagset)), self.tagset)
        for i in range(normalized_matrix.shape[0]):
                for j in range(normalized_matrix.shape[1]):
                    plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
        plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.Greens)
        plt.colorbar()
        plt.savefig('Confusion_Matrix.png')

    def per_pos_report(self,y_true_list,y_pred_list):
        report, support = 0, 0
        for y_true,y_pred in zip(y_true_list,y_pred_list):
            cr = metrics.classification_report(y_true,y_pred,labels=self.tagset,zero_division=0)
            cr = cr.replace('macro avg', 'MacroAvg').replace('micro avg', 'MicroAvg').replace('weighted avg', 'WeightedAvg')
            rows = cr.split('\n')
            tags , reportValues , supportValues = [], [], []
            for row in rows[1:]:
                row = row.strip().split()
                if len(row) < 2:
                    continue
                tagScores = [float(j) for j in row[1: len(row) - 1]]
                supportValues.append(int(row[-1]))
                tags.append(row[0])
                reportValues.append(tagScores)
            report += np.array(reportValues)
            support += np.array(supportValues)
        report = report/5.0
        support = support/5.0
        xlabels = ['Precision', 'Recall', 'F1 Score']
        ylabels = ['{0}[{1}]'.format(tags[i], sup) for i, sup in enumerate(support)]
        
        _, ax = plt.subplots(figsize=(18,10))
        ax.xaxis.set_tick_params()
        ax.yaxis.set_tick_params()
        plt.imshow(report, aspect='auto',cmap=plt.cm.RdYlGn)
    
        plt.xticks(np.arange(3), xlabels)
        plt.yticks(np.arange(len(tags)), ylabels)
        plt.colorbar()
        for i in range(report.shape[0]):
            for j in range(report.shape[1]):
                plt.text(j, i, format(report[i, j], '.2f'), horizontalalignment="center", verticalalignment="center")
        plt.savefig('Per_POS_Accuracy.png')

    def doTagging(self,input_sentence,prevTagsCount,prevWordTagMapping,prevTagTagMapping):
        input_sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input_sentence.strip()))
        untaggedWords = input_sentence.lower().split()
        untaggedWords = ['^'] + untaggedWords + ['$']
        tags = self.viterbi(untaggedWords, prevTagsCount, prevWordTagMapping, prevTagTagMapping)
        output_sentence = ''.join(f'{untaggedWords[i]}[{tags[i]}]   ' for i in range(1,len(untaggedWords)-1))
        return output_sentence

hmm = HMM()
hmm.cross_validation(hmm.tagged_sentences)
tagsCount,wordTagMapping,tagTagMapping = hmm.train()

# test_sent = "the united kingdom and the usa are on two sides of the atlantic"
def tagging(input_sentence):
    return hmm.doTagging(input_sentence, tagsCount, wordTagMapping, tagTagMapping)


interface = gr.Interface(fn = tagging,
                         inputs = gr.Textbox(
                             label="Input Sentence",
                             placeholder="Enter your sentence here...",
                         ),
                         outputs = gr.Textbox(
                             label="Tagged Output",
                             placeholder="Tagged sentence appears here...",
                         ),
                         title = "Hidden Markov Model POS Tagger",
                         description = "CS626 Assignment 1A (Autumn 2024)",
                         theme=gr.themes.Soft())
interface.launch(inline = False, share = True)