HMM-NLP / app.py
madhavkotecha's picture
Create app.py
0515619 verified
import numpy as np
import math
import nltk
import matplotlib.pyplot as plt
import re
import gradio as gr
from collections import Counter, defaultdict
from sklearn.model_selection import KFold
from sklearn import metrics
nltk.download('brown')
nltk.download('universal_tagset')
class HMM:
def __init__(self):
self.tagged_sentences = nltk.corpus.brown.tagged_sents(tagset='universal')
self.tagset = ['.', 'ADJ', 'ADP', 'ADV', 'CONJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PRT', 'VERB', 'X']
self.start_token = '^'
self.end_token = '$'
self.tagged_sentences = [[(self.start_token, self.start_token)] + sentence + [(self.end_token, self.end_token)] for sentence in self.tagged_sentences]
self.tagged_sentences = [[(word.lower(),tag) for word, tag in sentence] for sentence in self.tagged_sentences]
def train(self):
tagged_sent = np.array(self.tagged_sentences,dtype='object')
y_pred = []
y_true = []
train = (int)(0.8*len(tagged_sent))
train_sentences = tagged_sent[:train]
test_sentences = tagged_sent[train:]
tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)
for sentence in test_sentences:
untaggedWords = [word for word,tag in sentence]
prediction = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
for i in range(1,len(prediction)-1):
y_pred.append(prediction[i])
y_true.append(sentence[i][1])
f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
print(f"Precision = {precision:.2f}, Recall = {recall:.2f}, f05-Score = {f05_Score:.2f}, f1-Score = {f1_Score:.2f}, f2-Score = {f2_Score:.2f}")
return tagsCount,wordTagMapping,tagTagMapping
def viterbi(self,untaggedWords,tagsCount,wordTagMapping,tagTagMapping):
sent_len = len(untaggedWords)
# taglist = []
prev, curr, path = defaultdict(Counter), defaultdict(Counter), defaultdict(Counter)
prev = {tag: 0.0 for tag in tagsCount}
prev[self.start_token] = 1.0
path[0][self.start_token] = 1.0
for i in range(1,sent_len-1):
word = untaggedWords[i]
# max_prev_tag = max(prev, key=prev.get)
# taglist.append(max_prev_tag)
for tag in tagsCount:
curr[tag] = float('-inf')
# lprob = prev[max_prev_tag] + math.log(lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(transition_probability(max_prev_tag,tag,tagsCount,tagTagMapping))
# if lprob>curr[tag]:
# curr[tag] = lprob
# path[i][tag] = max_prev_tag
for prev_tag in tagsCount:
lprob = prev[prev_tag] + math.log(self.lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(self.transition_probability(prev_tag,tag,tagsCount,tagTagMapping))
if lprob>curr[tag]:
curr[tag] = lprob
path[i][tag] = prev_tag
for tag in tagsCount:
prev[tag] = curr[tag]
# max_prev_tag = max(prev, key=prev.get)
# taglist.append(max_prev_tag)
# taglist.append('$')
taglist = ['$' for i in range(sent_len)]
for tag in tagsCount:
if curr[tag] > curr[taglist[sent_len-2]]:
taglist[sent_len-2] = tag
for i in range(sent_len-3,0,-1):
taglist[i] = path[i+1][taglist[i+1]]
taglist[0] = self.start_token
return taglist
def mapping(self, sentences):
word_tag_pairs = [(word, tag) for sentence in sentences for word, tag in sentence]
tagsCount = Counter(tag for _,tag in word_tag_pairs)
wordTagMapping = defaultdict(Counter)
for word, tag in word_tag_pairs:
wordTagMapping[word][tag]+=1
tagTagMapping = defaultdict(Counter)
for sentence in sentences:
for i in range(len(sentence)-1):
tagTagMapping[sentence[i][1]][sentence[i+1][1]]+=1
return tagsCount,wordTagMapping,tagTagMapping
def transition_probability(self,curr,next,tagsCount,tagTagMapping):
currToNextCount = tagTagMapping[curr][next]
currCount = tagsCount[curr]
probability = (currToNextCount) / (currCount)
return 10**-9 if probability == 0 else probability
def lexical_probability(self,word,tag,tagsCount,wordTagMapping):
wordTagCount = wordTagMapping[word][tag]
tagCount = tagsCount[tag]
probability = (wordTagCount+1)/(tagCount+len(wordTagMapping)) # Adding Laplace Smoothing
return probability
def cross_validation(self, tagged_sentences):
kfold = KFold(n_splits=5, shuffle=True, random_state=1)
tagged_sent = np.array(tagged_sentences,dtype='object')
y_pred_list = []
y_true_list = []
for fold, (train, test) in enumerate(kfold.split(tagged_sent)):
train_sentences = tagged_sent[train]
test_sentences = tagged_sent[test]
tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences)
y_pred = []
y_true = []
for sentence in test_sentences:
untaggedWords = [word for word,_ in sentence]
pred_taglist = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping)
for i in range(1,len(pred_taglist)-1):
y_pred.append(pred_taglist[i])
y_true.append(sentence[i][1])
y_pred_list.append(np.array(y_pred))
y_true_list.append(np.array(y_true))
accuracy = metrics.accuracy_score(y_true_list[-1],y_pred_list[-1],normalize=True)
print(f'Fold {fold + 1} Accuracy: {accuracy}')
f05_Score, f1_Score, f2_Score, precision, recall = 0, 0, 0, 0, 0
for i in range(5):
precision += metrics.precision_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
recall += metrics.recall_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0)
f05_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=0.5,average='weighted',zero_division=0)
f1_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=1,average='weighted',zero_division=0)
f2_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=2,average='weighted',zero_division=0)
precision = precision/5.0
recall = recall/5.0
f05_Score = f05_Score/5.0
f1_Score = f1_Score/5.0
f2_Score = f2_Score/5.0
print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
self.per_pos_report(y_true_list,y_pred_list)
self.confusion_matrix(y_true_list,y_pred_list)
def confusion_matrix(self,y_true_list,y_pred_list):
total = 0.0
for y_true,y_pred in zip(y_true_list,y_pred_list):
cm = metrics.confusion_matrix(y_true,y_pred,labels=self.tagset)
total += cm
matrix = total/len(y_true_list)
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
plt.subplots(figsize=(12,10))
plt.xticks(np.arange(len(self.tagset)), self.tagset)
plt.yticks(np.arange(len(self.tagset)), self.tagset)
for i in range(normalized_matrix.shape[0]):
for j in range(normalized_matrix.shape[1]):
plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.Greens)
plt.colorbar()
plt.savefig('Confusion_Matrix.png')
def per_pos_report(self,y_true_list,y_pred_list):
report, support = 0, 0
for y_true,y_pred in zip(y_true_list,y_pred_list):
cr = metrics.classification_report(y_true,y_pred,labels=self.tagset,zero_division=0)
cr = cr.replace('macro avg', 'MacroAvg').replace('micro avg', 'MicroAvg').replace('weighted avg', 'WeightedAvg')
rows = cr.split('\n')
tags , reportValues , supportValues = [], [], []
for row in rows[1:]:
row = row.strip().split()
if len(row) < 2:
continue
tagScores = [float(j) for j in row[1: len(row) - 1]]
supportValues.append(int(row[-1]))
tags.append(row[0])
reportValues.append(tagScores)
report += np.array(reportValues)
support += np.array(supportValues)
report = report/5.0
support = support/5.0
xlabels = ['Precision', 'Recall', 'F1 Score']
ylabels = ['{0}[{1}]'.format(tags[i], sup) for i, sup in enumerate(support)]
_, ax = plt.subplots(figsize=(18,10))
ax.xaxis.set_tick_params()
ax.yaxis.set_tick_params()
plt.imshow(report, aspect='auto',cmap=plt.cm.RdYlGn)
plt.xticks(np.arange(3), xlabels)
plt.yticks(np.arange(len(tags)), ylabels)
plt.colorbar()
for i in range(report.shape[0]):
for j in range(report.shape[1]):
plt.text(j, i, format(report[i, j], '.2f'), horizontalalignment="center", verticalalignment="center")
plt.savefig('Per_POS_Accuracy.png')
def doTagging(self,input_sentence,prevTagsCount,prevWordTagMapping,prevTagTagMapping):
input_sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input_sentence.strip()))
untaggedWords = input_sentence.lower().split()
untaggedWords = ['^'] + untaggedWords + ['$']
tags = self.viterbi(untaggedWords, prevTagsCount, prevWordTagMapping, prevTagTagMapping)
output_sentence = ''.join(f'{untaggedWords[i]}[{tags[i]}] ' for i in range(1,len(untaggedWords)-1))
return output_sentence
hmm = HMM()
hmm.cross_validation(hmm.tagged_sentences)
tagsCount,wordTagMapping,tagTagMapping = hmm.train()
# test_sent = "the united kingdom and the usa are on two sides of the atlantic"
def tagging(input_sentence):
return hmm.doTagging(input_sentence, tagsCount, wordTagMapping, tagTagMapping)
interface = gr.Interface(fn = tagging,
inputs = gr.Textbox(
label="Input Sentence",
placeholder="Enter your sentence here...",
),
outputs = gr.Textbox(
label="Tagged Output",
placeholder="Tagged sentence appears here...",
),
title = "Hidden Markov Model POS Tagger",
description = "CS626 Assignment 1A (Autumn 2024)",
theme=gr.themes.Soft())
interface.launch(inline = False, share = True)