File size: 9,767 Bytes
25ac67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Bloom intermediate layer
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
See commit history for authorship.
"""
import math

import torch
import torch.nn as nn
import torch.nn.quantized.dynamic.modules.linear

from src.bloom.ops import (BloomGelu, BloomScaledSoftmax, attention_mask_func, build_alibi_tensor, dropout_add,
                           pre_process_alibi_for_pad, split_tensor_along_last_dim)


class BloomAttention(nn.Module):
    def __init__(self, config, layer_number=None):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.num_heads = config.n_head
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        self.masked_softmax_fusion = config.masked_softmax_fusion
        self.hidden_dropout = config.hidden_dropout

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        # Layer-wise attention scaling
        self.layer_number = max(1, layer_number)
        self.norm_factor = math.sqrt(self.head_dim) * self.layer_number

        # Scaled Softmax
        self.scale_mask_softmax = BloomScaledSoftmax(
            self.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            self.layer_number,
        )

        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)

        self.attention_dropout = nn.Dropout(config.attention_dropout)

    def forward(
        self,
        hidden_states,
        residual,
        layer_past=None,
        attention_mask=None,
        alibi=None,
        head_mask=None,
        use_cache=False,
        output_attentions=False,
    ):
        if alibi is None:
            current_sequence_length = hidden_states.shape[1] + (0 if layer_past is None else layer_past[0].shape[1])
            alibi = build_alibi_tensor(
                current_sequence_length, n_head=self.num_heads, dtype=hidden_states.dtype, device=hidden_states.device
            )

        # hidden_states: [batch_size, seq_length, hidden_size]
        # apply preprocessing if the input is padded
        if attention_mask is not None:
            alibi = pre_process_alibi_for_pad(alibi, attention_mask)
        # otherwise repeat alibi tensor with the batch size
        else:
            alibi = alibi.repeat(hidden_states.shape[0], 1, 1)

        mixed_x_layer = self.query_key_value(hidden_states)

        # [batch_size, seq_length, 3 x hidden_size] --> [batch_size, seq_length, num_heads, 3 x head_dim]
        new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_heads, 3 * self.head_dim)
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

        # [batch_size, seq_length, num_heads, 3 x head_dim] --> 3  [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=1)
            value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=1)

        if use_cache is True:
            present = (key_layer, value_layer)
        else:
            present = None

        # [batch_size, head_dim, q_length, k_length]
        output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1))

        # [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim]
        query_layer = query_layer.transpose(1, 0).reshape(output_size[2], output_size[0] * output_size[1], -1)

        # [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim]
        key_layer = key_layer.transpose(1, 0).reshape(output_size[3], output_size[0] * output_size[1], -1)

        # Raw attention scores. [batch_size * num_heads, q_length, k_length]
        beta = 1.0 / self.layer_number

        matmul_result = torch.baddbmm(
            alibi,
            query_layer.transpose(1, 0),
            key_layer.transpose(1, 0).transpose(1, 2),
            beta=beta,
            alpha=(1.0 / self.norm_factor),
        )

        # change view to [batch_size, num_heads, q_length, k_length]
        attention_scores = matmul_result.view(*output_size)

        # attention scores and attention mask [b, np, sq, sk]
        max_positions = max(attention_scores.shape[-1], attention_scores.shape[-2])
        attention_probs = self.scale_mask_softmax(attention_scores, attention_mask, max_positions).to(value_layer.dtype)
        attention_probs = self.attention_dropout(attention_probs)

        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # context layer shape: [batch_size, num_heads, q_length, head_dim]
        output_size = (value_layer.size(0), value_layer.size(2), query_layer.size(0), value_layer.size(3))

        # change view [k_length, batch_size x num_heads, head_dim]
        value_layer = value_layer.transpose(1, 0).reshape(value_layer.size(1), output_size[0] * output_size[1], -1)

        # change view [batch_size x num_heads, q_length, k_length]
        attention_probs_reshaped = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)

        # matmul: [batch_size * num_heads, q_length, head_dim]
        context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))

        # change view [batch_size, num_heads, q_length, head_dim]
        context_layer = context_layer.view(*output_size)

        # [batchs_size, num_heads, q_length, head_dim] --> [q_length, batch_size, num_heads, head_dim]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [q_length, batch_size, num_heads, head_dim] --> [q_length, batch_size, hidden_size]
        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)

        context_layer = context_layer.view(*new_context_layer_shape)

        # Output. [q_length, batch_size, hidden_size]

        # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
        output_tensor = self.dense(context_layer)
        output = output_tensor.transpose(1, 0)

        output = dropout_add(output, residual, self.hidden_dropout, self.training)

        outputs = (output, present)
        if output_attentions:
            outputs += (attention_probs,)

        return outputs


class BloomMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
        self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
        self.hidden_dropout = config.hidden_dropout
        self.gelu_impl = BloomGelu()

    def forward(self, hidden_states, residual):
        hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
        intermediate_output = self.dense_4h_to_h(hidden_states)
        output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
        return output


class BloomBlock(nn.Module):
    def __init__(self, config, layer_number=None):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
        self.n_head = config.n_head
        self.self_attention = BloomAttention(config, layer_number=layer_number)
        self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = BloomMLP(config)

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
        self.hidden_dropout = config.hidden_dropout

    def forward(
        self,
        hidden_states,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        use_cache=False,
        output_attentions=False,
        alibi=None,
    ):
        # hidden_states: [batch_size, seq_length, hidden_size]

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)

        # Layer norm post the self attention.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        # Self attention.
        attn_outputs = self.self_attention(
            layernorm_output,
            residual,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attention_output = attn_outputs[0]

        outputs = attn_outputs[1:]

        layernorm_output = self.post_attention_layernorm(attention_output)

        # Get residual
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = attention_output

        # MLP.
        output = self.mlp(layernorm_output, residual)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions