bloompage / src /bloom /block.py
maffia's picture
uploading stuff lol
25ac67d
"""
Bloom intermediate layer
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
See commit history for authorship.
"""
import math
import torch
import torch.nn as nn
import torch.nn.quantized.dynamic.modules.linear
from src.bloom.ops import (BloomGelu, BloomScaledSoftmax, attention_mask_func, build_alibi_tensor, dropout_add,
pre_process_alibi_for_pad, split_tensor_along_last_dim)
class BloomAttention(nn.Module):
def __init__(self, config, layer_number=None):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.n_head
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
self.masked_softmax_fusion = config.masked_softmax_fusion
self.hidden_dropout = config.hidden_dropout
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
# Layer-wise attention scaling
self.layer_number = max(1, layer_number)
self.norm_factor = math.sqrt(self.head_dim) * self.layer_number
# Scaled Softmax
self.scale_mask_softmax = BloomScaledSoftmax(
self.masked_softmax_fusion,
attention_mask_func,
self.attention_softmax_in_fp32,
self.layer_number,
)
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
self.attention_dropout = nn.Dropout(config.attention_dropout)
def forward(
self,
hidden_states,
residual,
layer_past=None,
attention_mask=None,
alibi=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
if alibi is None:
current_sequence_length = hidden_states.shape[1] + (0 if layer_past is None else layer_past[0].shape[1])
alibi = build_alibi_tensor(
current_sequence_length, n_head=self.num_heads, dtype=hidden_states.dtype, device=hidden_states.device
)
# hidden_states: [batch_size, seq_length, hidden_size]
# apply preprocessing if the input is padded
if attention_mask is not None:
alibi = pre_process_alibi_for_pad(alibi, attention_mask)
# otherwise repeat alibi tensor with the batch size
else:
alibi = alibi.repeat(hidden_states.shape[0], 1, 1)
mixed_x_layer = self.query_key_value(hidden_states)
# [batch_size, seq_length, 3 x hidden_size] --> [batch_size, seq_length, num_heads, 3 x head_dim]
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_heads, 3 * self.head_dim)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [batch_size, seq_length, num_heads, 3 x head_dim] --> 3 [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
if layer_past is not None:
past_key, past_value = layer_past
key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=1)
value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=1)
if use_cache is True:
present = (key_layer, value_layer)
else:
present = None
# [batch_size, head_dim, q_length, k_length]
output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1))
# [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim]
query_layer = query_layer.transpose(1, 0).reshape(output_size[2], output_size[0] * output_size[1], -1)
# [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim]
key_layer = key_layer.transpose(1, 0).reshape(output_size[3], output_size[0] * output_size[1], -1)
# Raw attention scores. [batch_size * num_heads, q_length, k_length]
beta = 1.0 / self.layer_number
matmul_result = torch.baddbmm(
alibi,
query_layer.transpose(1, 0),
key_layer.transpose(1, 0).transpose(1, 2),
beta=beta,
alpha=(1.0 / self.norm_factor),
)
# change view to [batch_size, num_heads, q_length, k_length]
attention_scores = matmul_result.view(*output_size)
# attention scores and attention mask [b, np, sq, sk]
max_positions = max(attention_scores.shape[-1], attention_scores.shape[-2])
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask, max_positions).to(value_layer.dtype)
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# context layer shape: [batch_size, num_heads, q_length, head_dim]
output_size = (value_layer.size(0), value_layer.size(2), query_layer.size(0), value_layer.size(3))
# change view [k_length, batch_size x num_heads, head_dim]
value_layer = value_layer.transpose(1, 0).reshape(value_layer.size(1), output_size[0] * output_size[1], -1)
# change view [batch_size x num_heads, q_length, k_length]
attention_probs_reshaped = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
# matmul: [batch_size * num_heads, q_length, head_dim]
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
# change view [batch_size, num_heads, q_length, head_dim]
context_layer = context_layer.view(*output_size)
# [batchs_size, num_heads, q_length, head_dim] --> [q_length, batch_size, num_heads, head_dim]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# [q_length, batch_size, num_heads, head_dim] --> [q_length, batch_size, hidden_size]
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
context_layer = context_layer.view(*new_context_layer_shape)
# Output. [q_length, batch_size, hidden_size]
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
output_tensor = self.dense(context_layer)
output = output_tensor.transpose(1, 0)
output = dropout_add(output, residual, self.hidden_dropout, self.training)
outputs = (output, present)
if output_attentions:
outputs += (attention_probs,)
return outputs
class BloomMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
self.hidden_dropout = config.hidden_dropout
self.gelu_impl = BloomGelu()
def forward(self, hidden_states, residual):
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
intermediate_output = self.dense_4h_to_h(hidden_states)
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
return output
class BloomBlock(nn.Module):
def __init__(self, config, layer_number=None):
super().__init__()
self.hidden_size = config.hidden_size
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
self.n_head = config.n_head
self.self_attention = BloomAttention(config, layer_number=layer_number)
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = BloomMLP(config)
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
self.hidden_dropout = config.hidden_dropout
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
alibi=None,
):
# hidden_states: [batch_size, seq_length, hidden_size]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Layer norm post the self attention.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# Self attention.
attn_outputs = self.self_attention(
layernorm_output,
residual,
layer_past=layer_past,
attention_mask=attention_mask,
alibi=alibi,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attention_output = attn_outputs[0]
outputs = attn_outputs[1:]
layernorm_output = self.post_attention_layernorm(attention_output)
# Get residual
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
# MLP.
output = self.mlp(layernorm_output, residual)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs # hidden_states, present, attentions