|
from __future__ import annotations |
|
|
|
import contextlib |
|
import logging |
|
import random |
|
|
|
import torch |
|
from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler |
|
from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker |
|
from hivemind.moe.expert_uid import ExpertInfo |
|
from torch import nn |
|
|
|
import src |
|
from src.client.remote_block import RemoteTransformerBlock |
|
from src.client.remote_sequence_info import RemoteSequenceInfo |
|
from src.data_structures import UID_DELIMITER |
|
from src.dht_utils import _create_remote_modules_from_infos |
|
|
|
use_hivemind_log_handler("in_root_logger") |
|
logger = get_logger(__file__) |
|
|
|
|
|
class RemoteSequential(nn.Module): |
|
""" |
|
A sequence of transformer blocks hosted by the swarm. |
|
""" |
|
|
|
def __init__(self, config: src.DistributedBloomConfig, dht: DHT, prefix: str, max_retries: int = 3): |
|
logger.warning(f"{self.__class__.__name__} is in active development; expect adventures") |
|
if prefix.endswith(UID_DELIMITER): |
|
logger.warning( |
|
f"dht_prefix {prefix} already ends with '{UID_DELIMITER}'." |
|
f"This will cause {self.__class__.__name__} to look for modules under " |
|
f"{prefix}{UID_DELIMITER}*. Please make sure this is what you intended." |
|
) |
|
|
|
super().__init__() |
|
self.config = config |
|
self.dht = dht |
|
self.prefix = prefix |
|
self.max_retries = max_retries |
|
self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p()) |
|
|
|
block_uids = tuple(f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer)) |
|
|
|
logger.debug(f"Remote block uids: {block_uids}") |
|
self.remote_sequence_info = RemoteSequenceInfo(dht, block_uids) |
|
|
|
def forward(self, inputs: torch.Tensor): |
|
assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed |
|
for block_index in range(self.config.n_layer): |
|
for retry_index in range(self.max_retries): |
|
try: |
|
block = self[block_index] |
|
(outputs,) = block(inputs) |
|
assert isinstance(outputs, torch.Tensor) |
|
assert outputs.shape == inputs.shape, f"Expected {block} output {inputs.shape}, got {outputs.shape}" |
|
inputs = outputs |
|
break |
|
except Exception as e: |
|
if retry_index == self.max_retries - 1: |
|
raise e |
|
else: |
|
logging.debug(f"Caught {e} when running forward for block {block_index}", exc_info=True) |
|
return inputs |
|
|
|
def __getitem__(self, block_index: int): |
|
assert 0 <= block_index < self.config.n_layer |
|
(module,) = _create_remote_modules_from_infos([self.remote_sequence_info.block_infos[block_index]], self.p2p) |
|
return module |
|
|
|
def __iter__(self): |
|
for block_index in range(self.config.n_layer): |
|
yield self[block_index] |
|
|
|
def __len__(self): |
|
return len(self.remote_sequence_info) |
|
|
|
def inference_session(self) -> RemoteSequentialInferenceSession: |
|
self.remote_sequence_info.update_() |
|
return RemoteSequentialInferenceSession(self.remote_sequence_info, self.p2p) |
|
|
|
|
|
class RemoteSequentialInferenceSession: |
|
"""An interface to a multi-step *inference* session for a sequence of remote transformer blocks""" |
|
|
|
def __init__(self, remote_sequence_info: RemoteSequenceInfo, p2p: P2P): |
|
self.remote_sequence_info = remote_sequence_info |
|
self.p2p = p2p |
|
self.closed = False |
|
self.stack = contextlib.ExitStack() |
|
self.active_sessions = [] |
|
|
|
def __enter__(self): |
|
assert not self.closed |
|
self.stack.__enter__() |
|
|
|
current_block = 0 |
|
while current_block != len(self.remote_sequence_info): |
|
candidate_spans = self.remote_sequence_info.spans_containing_block[current_block] |
|
chosen_span = random.choice(candidate_spans) |
|
assert chosen_span.start <= current_block < chosen_span.end |
|
|
|
|
|
remote = RemoteTransformerBlock(self.remote_sequence_info.block_infos[current_block], self.p2p) |
|
_ = remote.info |
|
span_uids = self.remote_sequence_info.block_uids[current_block : chosen_span.end] |
|
remote._info = ExpertInfo(" ".join(span_uids), chosen_span.peer_id) |
|
self.active_sessions.append(remote.inference_session()) |
|
self.stack.enter_context(self.active_sessions[-1]) |
|
current_block = chosen_span.end |
|
|
|
|
|
return self |
|
|
|
def step(self, inputs: torch.Tensor): |
|
assert not self.closed |
|
for session in self.active_sessions: |
|
outputs = session.step(inputs) |
|
assert outputs.shape == inputs.shape, f"expected {inputs.shape}, got {outputs.shape}" |
|
inputs = outputs |
|
return inputs |
|
|
|
def close(self, *exc_details): |
|
"""Finish a given inference session, close the underlying connection""" |
|
if not self.closed: |
|
self.stack.__exit__(*exc_details or (None, None, None)) |
|
self.active_sessions.clear() |
|
self.closed = True |
|
|
|
def __exit__(self, *exc_details): |
|
self.close(*exc_details) |
|
|
|
def __del__(self): |
|
self.close() |
|
|