import subprocess import torch from transformers import pipeline from logging_config import logger, log_buffer device = "cuda" if torch.cuda.is_available() else "cpu" def convert_audio_to_wav(input_file: str, output_file: str, ffmpeg_path: str) -> str: logger.info(f"Converting {input_file} to WAV format: {output_file}") cmd = [ ffmpeg_path, "-y", # Overwrite output files without asking "-i", input_file, "-ar", "16000", # Set audio sampling rate to 16kHz "-ac", "1", # Set number of audio channels to mono output_file ] try: subprocess.run(cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info("Audio conversion to WAV completed successfully.") return output_file except subprocess.CalledProcessError as e: ffmpeg_error = e.stderr.decode() logger.error(f"ffmpeg error: {ffmpeg_error}") raise RuntimeError("Failed to convert audio to WAV.") from e def run_whisper_transcription(wav_file_path: str, device: str): try: asr_pipeline = pipeline( "automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1, return_timestamps=True, generate_kwargs={"task": "transcribe", "language": "en"} ) logger.info("Whisper ASR pipeline initialised.") logger.info("Starting transcription...") # Perform transcription result = asr_pipeline(wav_file_path) transcription = result.get("text", "") logger.info("Transcription completed successfully.") yield transcription, log_buffer.getvalue() except Exception as e: err_msg = f"Error during transcription: {str(e)}" logger.error(err_msg) yield err_msg, log_buffer.getvalue()