Spaces:
Sleeping
Sleeping
import os | |
import soundfile as sf # Import soundfile for audio file handling | |
import numpy as np | |
import gradio as gr | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
# Choose a suitable Kannada speech-to-text model from Hugging Face | |
model_name = "vasista22/whisper-kannada-tiny" # Replace with your preferred model | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def transcribe_kannada(audio_data): | |
""" | |
Transcribes recorded Kannada audio using the specified Hugging Face model. | |
Args: | |
audio_data: A NumPy array representing the recorded audio data. | |
Returns: | |
The transcribed text in Kannada. | |
""" | |
sampling_rate = 16000 # Assuming common speech sampling rate (adjust if needed) | |
audio_input = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**audio_input).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
return transcription | |
def record_and_transcribe(audio): | |
""" | |
Records audio from the microphone, processes each channel independently (if applicable), | |
converts them to speech-to-text, and plays reversed audio. | |
Args: | |
audio: A tuple containing recorded audio information (multiple audio channels). | |
Returns: | |
A list of transcriptions (one for each channel), or a tuple with transcriptions and reversed audio. | |
""" | |
transcriptions = [] | |
for channel in audio: | |
# Process each audio channel (replace with your actual conversion logic) | |
audio_data = channel # Assuming no processing needed for individual channels | |
transcription = transcribe_kannada(audio_data) | |
transcriptions.append(transcription) | |
# ... (handle reversed audio if needed) | |
return transcriptions # Or a tuple with transcriptions and reversed audio | |
# input_audio = gr.Audio( | |
# sources=["microphone"], | |
# type="numpy", # Specify audio format as NumPy array | |
# normalization=" [-1, 1]", # Normalize audio data to -1 to 1 range for model compatibility | |
# label="Record Kannada Audio", | |
# ) | |
input_audio = gr.Audio( | |
sources=["microphone"], | |
type="numpy", # Specify audio format as NumPy array | |
label="Record Kannada Audio", | |
) | |
text_output = gr.Textbox(label="Transcription (ಕನ್ನಡ)") | |
audio_output = gr.Audio(label="Reversed Audio (Optional)", type="numpy") | |
demo = gr.Interface( | |
fn=record_and_transcribe, | |
inputs=input_audio, | |
outputs=[text_output, audio_output], | |
description="Kannada Speech-to-Text and Reverse Audio", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |