import os import soundfile as sf # Import soundfile for audio file handling import numpy as np import gradio as gr from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC # Choose a suitable Kannada speech-to-text model from Hugging Face model_name = "vasista22/whisper-kannada-tiny" # Replace with your preferred model processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) def transcribe_kannada(audio_data): """ Transcribes recorded Kannada audio using the specified Hugging Face model. Args: audio_data: A NumPy array representing the recorded audio data. Returns: The transcribed text in Kannada. """ sampling_rate = 16000 # Assuming common speech sampling rate (adjust if needed) audio_input = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt") with torch.no_grad(): logits = model(**audio_input).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) return transcription def record_and_transcribe(audio): """ Records audio from the microphone, processes each channel independently (if applicable), converts them to speech-to-text, and plays reversed audio. Args: audio: A tuple containing recorded audio information (multiple audio channels). Returns: A list of transcriptions (one for each channel), or a tuple with transcriptions and reversed audio. """ transcriptions = [] for channel in audio: # Process each audio channel (replace with your actual conversion logic) audio_data = channel # Assuming no processing needed for individual channels transcription = transcribe_kannada(audio_data) transcriptions.append(transcription) # ... (handle reversed audio if needed) return transcriptions # Or a tuple with transcriptions and reversed audio # input_audio = gr.Audio( # sources=["microphone"], # type="numpy", # Specify audio format as NumPy array # normalization=" [-1, 1]", # Normalize audio data to -1 to 1 range for model compatibility # label="Record Kannada Audio", # ) input_audio = gr.Audio( sources=["microphone"], type="numpy", # Specify audio format as NumPy array label="Record Kannada Audio", ) text_output = gr.Textbox(label="Transcription (ಕನ್ನಡ)") audio_output = gr.Audio(label="Reversed Audio (Optional)", type="numpy") demo = gr.Interface( fn=record_and_transcribe, inputs=input_audio, outputs=[text_output, audio_output], description="Kannada Speech-to-Text and Reverse Audio", ) if __name__ == "__main__": demo.launch(share=True)