maliahson's picture
Update app.py
64becca verified
import torch
from transformers import pipeline
import librosa
from datetime import datetime
from deep_translator import GoogleTranslator
from typing import Dict, Union
from gliner import GLiNER
import gradio as gr
# Model and device configuration for transcription
MODEL_NAME = "openai/whisper-large-v3-turbo"
device = 0 if torch.cuda.is_available() else "cpu"
# Initialize Whisper pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# Initialize GLiNER for information extraction
gliner_model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to("cpu")
def merge_entities(entities):
if not entities:
return []
merged = []
current = entities[0]
for next_entity in entities[1:]:
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
current['word'] += ' ' + next_entity['word']
current['end'] = next_entity['end']
else:
merged.append(current)
current = next_entity
merged.append(current)
return merged
def transcribe_audio(audio_path):
"""
Transcribe a local audio file using the Whisper pipeline, log timing, and save transcription to a file.
"""
try:
# Log start time
start_time = datetime.now()
# Ensure audio is mono and resampled to 16kHz
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Perform transcription
transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"]
# Log end time
end_time = datetime.now()
return transcription
except Exception as e:
return f"Error processing audio: {e}"
def translate_text_to_english(text):
"""
Translate text into English using GoogleTranslator.
"""
try:
# Perform translation
translated_text = GoogleTranslator(source='auto', target='en').translate(text)
return translated_text
except Exception as e:
return f"Error during translation: {e}"
def extract_information(prompt: str, text: str, threshold: float, nested_ner: bool) -> Dict[str, Union[str, int, float]]:
"""
Extract entities from the English text using GLiNER model.
"""
try:
text = prompt + "\n" + text
entities = [
{
"entity": entity["label"],
"word": entity["text"],
"start": entity["start"],
"end": entity["end"],
"score": 0,
}
for entity in gliner_model.predict_entities(
text, ["match"], flat_ner=not nested_ner, threshold=threshold
)
]
merged_entities = merge_entities(entities)
return {"text": text, "entities": merged_entities}
except Exception as e:
return {"error": f"Information extraction failed: {e}"}
def pipeline_fn(audio, prompt, threshold, nested_ner):
"""
Combine transcription, translation, and information extraction in a single pipeline.
"""
transcription = transcribe_audio(audio)
if "Error" in transcription:
return transcription, "", "", {}
translated_text = translate_text_to_english(transcription)
if "Error" in translated_text:
return transcription, translated_text, "", {}
info_extraction = extract_information(prompt, translated_text, threshold, nested_ner)
return transcription, translated_text, info_extraction
# Gradio Interface
with gr.Blocks(title="Audio Processing and Information Extraction") as interface:
gr.Markdown("## Audio Transcription, Translation, and Information Extraction")
with gr.Row():
# Fixed: removed 'source' argument from gr.Audio
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
prompt_input = gr.Textbox(label="Prompt for Information Extraction", placeholder="Enter your prompt here")
with gr.Row():
threshold_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="NER Threshold")
nested_ner_checkbox = gr.Checkbox(label="Enable Nested NER")
with gr.Row():
transcription_output = gr.Textbox(label="Transcription (Urdu)", interactive=False) # Corrected to interactive=False
translation_output = gr.Textbox(label="Translation (English)", interactive=False) # Corrected to interactive=False
with gr.Row():
extraction_output = gr.HighlightedText(label="Extracted Information")
process_button = gr.Button("Process Audio")
process_button.click(
fn=pipeline_fn,
inputs=[audio_input, prompt_input, threshold_slider, nested_ner_checkbox],
outputs=[transcription_output, translation_output, extraction_output],
)
if __name__ == "__main__":
interface.launch()