|
import torch |
|
from transformers import pipeline |
|
import librosa |
|
from datetime import datetime |
|
from deep_translator import GoogleTranslator |
|
from typing import Dict, Union |
|
from gliner import GLiNER |
|
import gradio as gr |
|
|
|
|
|
MODEL_NAME = "openai/whisper-large-v3-turbo" |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
|
|
gliner_model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to("cpu") |
|
|
|
def merge_entities(entities): |
|
if not entities: |
|
return [] |
|
merged = [] |
|
current = entities[0] |
|
for next_entity in entities[1:]: |
|
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): |
|
current['word'] += ' ' + next_entity['word'] |
|
current['end'] = next_entity['end'] |
|
else: |
|
merged.append(current) |
|
current = next_entity |
|
merged.append(current) |
|
return merged |
|
|
|
def transcribe_audio(audio_path): |
|
""" |
|
Transcribe a local audio file using the Whisper pipeline, log timing, and save transcription to a file. |
|
""" |
|
try: |
|
|
|
start_time = datetime.now() |
|
|
|
|
|
audio, sr = librosa.load(audio_path, sr=16000, mono=True) |
|
|
|
|
|
transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"] |
|
|
|
|
|
end_time = datetime.now() |
|
|
|
return transcription |
|
|
|
except Exception as e: |
|
return f"Error processing audio: {e}" |
|
|
|
def translate_text_to_english(text): |
|
""" |
|
Translate text into English using GoogleTranslator. |
|
""" |
|
try: |
|
|
|
translated_text = GoogleTranslator(source='auto', target='en').translate(text) |
|
return translated_text |
|
except Exception as e: |
|
return f"Error during translation: {e}" |
|
|
|
def extract_information(prompt: str, text: str, threshold: float, nested_ner: bool) -> Dict[str, Union[str, int, float]]: |
|
""" |
|
Extract entities from the English text using GLiNER model. |
|
""" |
|
try: |
|
text = prompt + "\n" + text |
|
entities = [ |
|
{ |
|
"entity": entity["label"], |
|
"word": entity["text"], |
|
"start": entity["start"], |
|
"end": entity["end"], |
|
"score": 0, |
|
} |
|
for entity in gliner_model.predict_entities( |
|
text, ["match"], flat_ner=not nested_ner, threshold=threshold |
|
) |
|
] |
|
merged_entities = merge_entities(entities) |
|
return {"text": text, "entities": merged_entities} |
|
except Exception as e: |
|
return {"error": f"Information extraction failed: {e}"} |
|
|
|
def pipeline_fn(audio, prompt, threshold, nested_ner): |
|
""" |
|
Combine transcription, translation, and information extraction in a single pipeline. |
|
""" |
|
transcription = transcribe_audio(audio) |
|
if "Error" in transcription: |
|
return transcription, "", "", {} |
|
|
|
translated_text = translate_text_to_english(transcription) |
|
if "Error" in translated_text: |
|
return transcription, translated_text, "", {} |
|
|
|
info_extraction = extract_information(prompt, translated_text, threshold, nested_ner) |
|
return transcription, translated_text, info_extraction |
|
|
|
|
|
with gr.Blocks(title="Audio Processing and Information Extraction") as interface: |
|
gr.Markdown("## Audio Transcription, Translation, and Information Extraction") |
|
|
|
with gr.Row(): |
|
|
|
audio_input = gr.Audio(type="filepath", label="Upload Audio File") |
|
prompt_input = gr.Textbox(label="Prompt for Information Extraction", placeholder="Enter your prompt here") |
|
|
|
with gr.Row(): |
|
threshold_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="NER Threshold") |
|
nested_ner_checkbox = gr.Checkbox(label="Enable Nested NER") |
|
|
|
with gr.Row(): |
|
transcription_output = gr.Textbox(label="Transcription (Urdu)", interactive=False) |
|
translation_output = gr.Textbox(label="Translation (English)", interactive=False) |
|
|
|
with gr.Row(): |
|
extraction_output = gr.HighlightedText(label="Extracted Information") |
|
|
|
process_button = gr.Button("Process Audio") |
|
|
|
process_button.click( |
|
fn=pipeline_fn, |
|
inputs=[audio_input, prompt_input, threshold_slider, nested_ner_checkbox], |
|
outputs=[transcription_output, translation_output, extraction_output], |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|