Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from torch import nn
|
7 |
+
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
|
8 |
+
|
9 |
+
# Set up the Streamlit app
|
10 |
+
st.title("Optic Disc and Cup Segmentation")
|
11 |
+
st.write("Upload an image to segment the optic disc and cup:")
|
12 |
+
|
13 |
+
# Create a file uploader
|
14 |
+
uploaded_file = st.file_uploader("Choose an image", type=["png", "jpg", "jpeg"])
|
15 |
+
|
16 |
+
# Load the processor and model
|
17 |
+
processor = AutoImageProcessor.from_pretrained("pamixsun/segformer_for_optic_disc_cup_segmentation")
|
18 |
+
model = SegformerForSemanticSegmentation.from_pretrained("pamixsun/segformer_for_optic_disc_cup_segmentation")
|
19 |
+
|
20 |
+
# Define a function to process the image
|
21 |
+
def process_image(image):
|
22 |
+
# Convert the image to RGB
|
23 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
24 |
+
|
25 |
+
# Process the input image
|
26 |
+
inputs = processor(image, return_tensors="pt")
|
27 |
+
|
28 |
+
# Perform inference
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
logits = outputs.logits.cpu()
|
32 |
+
|
33 |
+
# Upsample the logits to match the input image size
|
34 |
+
upsampled_logits = nn.functional.interpolate(
|
35 |
+
logits,
|
36 |
+
size=image.shape[:2],
|
37 |
+
mode="bilinear",
|
38 |
+
align_corners=False,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Get the predicted segmentation
|
42 |
+
pred_disc_cup = upsampled_logits.argmax(dim=1)[0].numpy().astype(np.uint8)
|
43 |
+
|
44 |
+
# Display the input image and the segmented output
|
45 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
|
46 |
+
axes[0].imshow(image)
|
47 |
+
axes[0].set_title('Input Image')
|
48 |
+
axes[0].axis('off')
|
49 |
+
axes[1].imshow(pred_disc_cup, cmap='gray')
|
50 |
+
axes[1].set_title('Segmented Output')
|
51 |
+
axes[1].axis('off')
|
52 |
+
plt.tight_layout()
|
53 |
+
return fig
|
54 |
+
|
55 |
+
# Display the output
|
56 |
+
if uploaded_file:
|
57 |
+
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
|
58 |
+
output_fig = process_image(image)
|
59 |
+
st.pyplot(output_fig)
|