File size: 26,261 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9de9a93e-9247-4799-a5bb-2ec1575ae8c2",
   "metadata": {},
   "source": [
    "# Live 3D Human Pose Estimation with OpenVINO\n",
    "\n",
    "This notebook demonstrates live 3D Human Pose Estimation with OpenVINO via a webcam. We utilize the model [human-pose-estimation-3d-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/human-pose-estimation-3d-0001) from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/). At the end of this notebook, you will see live inference results from your webcam (if available). Alternatively, you can also upload a video file to test out the algorithms.\n",
    "**Make sure you have properly installed the [Jupyter extension](https://github.com/jupyter-widgets/pythreejs#jupyterlab) and been using JupyterLab to run the demo as suggested in the `README.md`**\n",
    "\n",
    "> **NOTE**: _To use a webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a remote server, the webcam will not work. However, you can still do inference on a video file in the final step. This demo utilizes the Python interface in `Three.js` integrated with WebGL to process data from the model inference. These results are processed and displayed in the notebook._\n",
    "\n",
    "_To ensure that the results are displayed correctly, run the code in a recommended browser on one of the following operating systems:_\n",
    "_Ubuntu, Windows: Chrome_\n",
    "_macOS: Safari_\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Prerequisites](#Prerequisites)\n",
    "- [Imports](#Imports)\n",
    "- [The model](#The-model)\n",
    "    - [Download the model](#Download-the-model)\n",
    "    - [Convert Model to OpenVINO IR format](#Convert-Model-to-OpenVINO-IR-format)\n",
    "    - [Select inference device](#Select-inference-device)\n",
    "    - [Load the model](#Load-the-model)\n",
    "- [Processing](#Processing)\n",
    "    - [Model Inference](#Model-Inference)\n",
    "    - [Draw 2D Pose Overlays](#Draw-2D-Pose-Overlays)\n",
    "    - [Main Processing Function](#Main-Processing-Function)\n",
    "- [Run](#Run)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7925a51b-26ec-43c5-9660-0705c03d724d",
   "metadata": {},
   "source": [
    "## Prerequisites\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "**The `pythreejs` extension may not display properly when using a Jupyter Notebook release. Therefore, it is recommended to use Jupyter Lab instead.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b84c1f5e-502b-4037-b871-9f84b4e8cef0",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install pythreejs \"openvino-dev>=2024.0.0\" \"opencv-python\" \"torch\" \"onnx\" --extra-index-url https://download.pytorch.org/whl/cpu"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5a9332fb-1cee-4faa-9555-731ddf0e0df7",
   "metadata": {},
   "source": [
    "## Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "316ad889-8514-430f-baf4-4f32abd43356",
   "metadata": {},
   "outputs": [],
   "source": [
    "import collections\n",
    "import time\n",
    "from pathlib import Path\n",
    "\n",
    "import cv2\n",
    "import ipywidgets as widgets\n",
    "import numpy as np\n",
    "from IPython.display import clear_output, display\n",
    "import openvino as ov\n",
    "\n",
    "# Fetch `notebook_utils` module\n",
    "import requests\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
    ")\n",
    "with open(\"notebook_utils.py\", \"w\") as f:\n",
    "    f.write(r.text)\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/engine3js.py\",\n",
    ")\n",
    "with open(\"engine3js.py\", \"w\") as f:\n",
    "    f.write(r.text)\n",
    "\n",
    "import notebook_utils as utils\n",
    "import engine3js as engine"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c96ad61a-59ff-4873-b2f3-3994d6826f51",
   "metadata": {},
   "source": [
    "## The model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Download the model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "We use `omz_downloader`, which is a command line tool from the `openvino-dev` package. `omz_downloader` automatically creates a directory structure and downloads the selected model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "31bd89c7-be8a-4b03-ba38-c19d328e332d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# directory where model will be downloaded\n",
    "base_model_dir = \"model\"\n",
    "\n",
    "# model name as named in Open Model Zoo\n",
    "model_name = \"human-pose-estimation-3d-0001\"\n",
    "# selected precision (FP32, FP16)\n",
    "precision = \"FP32\"\n",
    "\n",
    "BASE_MODEL_NAME = f\"{base_model_dir}/public/{model_name}/{model_name}\"\n",
    "model_path = Path(BASE_MODEL_NAME).with_suffix(\".pth\")\n",
    "onnx_path = Path(BASE_MODEL_NAME).with_suffix(\".onnx\")\n",
    "\n",
    "ir_model_path = f\"model/public/{model_name}/{precision}/{model_name}.xml\"\n",
    "model_weights_path = f\"model/public/{model_name}/{precision}/{model_name}.bin\"\n",
    "\n",
    "if not model_path.exists():\n",
    "    download_command = f\"omz_downloader \" f\"--name {model_name} \" f\"--output_dir {base_model_dir}\"\n",
    "    ! $download_command"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88f39f76-2f81-4c18-9fda-98ea6a944220",
   "metadata": {},
   "source": [
    "### Convert Model to OpenVINO IR format\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "The selected model comes from the public directory, which means it must be converted into OpenVINO Intermediate Representation (OpenVINO IR). We use `omz_converter` to convert the ONNX format model to the OpenVINO IR format."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9bdfdee-c2ef-4710-96c1-8a6a896a8cba",
   "metadata": {},
   "outputs": [],
   "source": [
    "if not onnx_path.exists():\n",
    "    convert_command = (\n",
    "        f\"omz_converter \" f\"--name {model_name} \" f\"--precisions {precision} \" f\"--download_dir {base_model_dir} \" f\"--output_dir {base_model_dir}\"\n",
    "    )\n",
    "    ! $convert_command"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6458fe97-6e93-4357-bc9a-16394d962e56",
   "metadata": {},
   "source": [
    "### Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ae27d9b7-95ae-4b1c-acb7-c911ec7f698c",
   "metadata": {},
   "outputs": [],
   "source": [
    "core = ov.Core()\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "986a07ac-d092-4254-848a-dd48f4934fb5",
   "metadata": {},
   "source": [
    "### Load the model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Converted models are located in a fixed structure, which indicates vendor, model name and precision.\n",
    "\n",
    "First, initialize the inference engine, OpenVINO Runtime. Then, read the network architecture and model weights from the `.bin` and `.xml` files to compile for the desired device. An inference request is then created to infer the compiled model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "92a04102-aebf-4976-874b-b98dca97ec48",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize inference engine\n",
    "core = ov.Core()\n",
    "# read the network and corresponding weights from file\n",
    "model = core.read_model(model=ir_model_path, weights=model_weights_path)\n",
    "# load the model on the specified device\n",
    "compiled_model = core.compile_model(model=model, device_name=device.value)\n",
    "infer_request = compiled_model.create_infer_request()\n",
    "input_tensor_name = model.inputs[0].get_any_name()\n",
    "\n",
    "# get input and output names of nodes\n",
    "input_layer = compiled_model.input(0)\n",
    "output_layers = list(compiled_model.outputs)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5c0ffd17-df71-4178-8df8-db4ccf431621",
   "metadata": {},
   "source": [
    "The input for the model is data from the input image and the outputs are heat maps, PAF (part affinity fields) and features."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1b25847-fc80-41a1-930b-7c304fd1fe70",
   "metadata": {},
   "outputs": [],
   "source": [
    "input_layer.any_name, [o.any_name for o in output_layers]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "48eb5032-a06e-48c1-a3d6-f0fbad9924fb",
   "metadata": {},
   "source": [
    "## Processing\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Model Inference\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Frames captured from video files or the live webcam are used as the input for the 3D model. This is how you obtain the output heat maps, PAF (part affinity fields) and features."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08f8055b-a6cf-4003-8232-6f73a86d6034",
   "metadata": {},
   "outputs": [],
   "source": [
    "def model_infer(scaled_img, stride):\n",
    "    \"\"\"\n",

    "    Run model inference on the input image\n",

    "\n",

    "    Parameters:\n",

    "        scaled_img: resized image according to the input size of the model\n",

    "        stride: int, the stride of the window\n",

    "    \"\"\"\n",
    "\n",
    "    # Remove excess space from the picture\n",
    "    img = scaled_img[\n",
    "        0 : scaled_img.shape[0] - (scaled_img.shape[0] % stride),\n",
    "        0 : scaled_img.shape[1] - (scaled_img.shape[1] % stride),\n",
    "    ]\n",
    "\n",
    "    img = np.transpose(img, (2, 0, 1))[None,]\n",
    "    infer_request.infer({input_tensor_name: img})\n",
    "    # A set of three inference results is obtained\n",
    "    results = {name: infer_request.get_tensor(name).data[:] for name in {\"features\", \"heatmaps\", \"pafs\"}}\n",
    "    # Get the results\n",
    "    results = (results[\"features\"][0], results[\"heatmaps\"][0], results[\"pafs\"][0])\n",
    "\n",
    "    return results"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6991403a-4f87-45be-9b3f-d30b23a46dbe",
   "metadata": {},
   "source": [
    "### Draw 2D Pose Overlays\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "We need to define some connections between the joints in advance, so that we can draw the structure of the human body in the resulting image after obtaining the inference results.\n",
    "Joints are drawn as circles and limbs are drawn as lines. The code is based on the [3D Human Pose Estimation Demo](https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/human_pose_estimation_3d_demo/python) from Open Model Zoo."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "22fd3e08-ed3b-44ac-bd07-4a80130d6681",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3D edge index array\n",
    "body_edges = np.array(\n",
    "    [\n",
    "        [0, 1],\n",
    "        [0, 9],\n",
    "        [9, 10],\n",
    "        [10, 11],  # neck - r_shoulder - r_elbow - r_wrist\n",
    "        [0, 3],\n",
    "        [3, 4],\n",
    "        [4, 5],  # neck - l_shoulder - l_elbow - l_wrist\n",
    "        [1, 15],\n",
    "        [15, 16],  # nose - l_eye - l_ear\n",
    "        [1, 17],\n",
    "        [17, 18],  # nose - r_eye - r_ear\n",
    "        [0, 6],\n",
    "        [6, 7],\n",
    "        [7, 8],  # neck - l_hip - l_knee - l_ankle\n",
    "        [0, 12],\n",
    "        [12, 13],\n",
    "        [13, 14],  # neck - r_hip - r_knee - r_ankle\n",
    "    ]\n",
    ")\n",
    "\n",
    "\n",
    "body_edges_2d = np.array(\n",
    "    [\n",
    "        [0, 1],  # neck - nose\n",
    "        [1, 16],\n",
    "        [16, 18],  # nose - l_eye - l_ear\n",
    "        [1, 15],\n",
    "        [15, 17],  # nose - r_eye - r_ear\n",
    "        [0, 3],\n",
    "        [3, 4],\n",
    "        [4, 5],  # neck - l_shoulder - l_elbow - l_wrist\n",
    "        [0, 9],\n",
    "        [9, 10],\n",
    "        [10, 11],  # neck - r_shoulder - r_elbow - r_wrist\n",
    "        [0, 6],\n",
    "        [6, 7],\n",
    "        [7, 8],  # neck - l_hip - l_knee - l_ankle\n",
    "        [0, 12],\n",
    "        [12, 13],\n",
    "        [13, 14],  # neck - r_hip - r_knee - r_ankle\n",
    "    ]\n",
    ")\n",
    "\n",
    "\n",
    "def draw_poses(frame, poses_2d, scaled_img, use_popup):\n",
    "    \"\"\"\n",

    "    Draw 2D pose overlays on the image to visualize estimated poses.\n",

    "    Joints are drawn as circles and limbs are drawn as lines.\n",

    "\n",

    "    :param frame: the input image\n",

    "    :param poses_2d: array of human joint pairs\n",

    "    \"\"\"\n",
    "    for pose in poses_2d:\n",
    "        pose = np.array(pose[0:-1]).reshape((-1, 3)).transpose()\n",
    "        was_found = pose[2] > 0\n",
    "\n",
    "        pose[0], pose[1] = (\n",
    "            pose[0] * frame.shape[1] / scaled_img.shape[1],\n",
    "            pose[1] * frame.shape[0] / scaled_img.shape[0],\n",
    "        )\n",
    "\n",
    "        # Draw joints.\n",
    "        for edge in body_edges_2d:\n",
    "            if was_found[edge[0]] and was_found[edge[1]]:\n",
    "                cv2.line(\n",
    "                    frame,\n",
    "                    tuple(pose[0:2, edge[0]].astype(np.int32)),\n",
    "                    tuple(pose[0:2, edge[1]].astype(np.int32)),\n",
    "                    (255, 255, 0),\n",
    "                    4,\n",
    "                    cv2.LINE_AA,\n",
    "                )\n",
    "        # Draw limbs.\n",
    "        for kpt_id in range(pose.shape[1]):\n",
    "            if pose[2, kpt_id] != -1:\n",
    "                cv2.circle(\n",
    "                    frame,\n",
    "                    tuple(pose[0:2, kpt_id].astype(np.int32)),\n",
    "                    3,\n",
    "                    (0, 255, 255),\n",
    "                    -1,\n",
    "                    cv2.LINE_AA,\n",
    "                )\n",
    "\n",
    "    return frame"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6894ce8-ac91-464d-a7f7-54d09f399f4f",
   "metadata": {},
   "source": [
    "### Main Processing Function\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Run 3D pose estimation on the specified source. It could be either a webcam feed or a video file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3be526d0-75ad-4bd1-85b1-ca8185eca918",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def run_pose_estimation(source=0, flip=False, use_popup=False, skip_frames=0):\n",
    "    \"\"\"\n",

    "    2D image as input, using OpenVINO as inference backend,\n",

    "    get joints 3D coordinates, and draw 3D human skeleton in the scene\n",

    "\n",

    "    :param source:      The webcam number to feed the video stream with primary webcam set to \"0\", or the video path.\n",

    "    :param flip:        To be used by VideoPlayer function for flipping capture image.\n",

    "    :param use_popup:   False for showing encoded frames over this notebook, True for creating a popup window.\n",

    "    :param skip_frames: Number of frames to skip at the beginning of the video.\n",

    "    \"\"\"\n",
    "\n",
    "    focal_length = -1  # default\n",
    "    stride = 8\n",
    "    player = None\n",
    "    skeleton_set = None\n",
    "\n",
    "    try:\n",
    "        # create video player to play with target fps  video_path\n",
    "        # get the frame from camera\n",
    "        # You can skip first N frames to fast forward video. change 'skip_first_frames'\n",
    "        player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_frames)\n",
    "        # start capturing\n",
    "        player.start()\n",
    "\n",
    "        input_image = player.next()\n",
    "        # set the window size\n",
    "        resize_scale = 450 / input_image.shape[1]\n",
    "        windows_width = int(input_image.shape[1] * resize_scale)\n",
    "        windows_height = int(input_image.shape[0] * resize_scale)\n",
    "\n",
    "        # use visualization library\n",
    "        engine3D = engine.Engine3js(grid=True, axis=True, view_width=windows_width, view_height=windows_height)\n",
    "\n",
    "        if use_popup:\n",
    "            # display the 3D human pose in this notebook, and origin frame in popup window\n",
    "            display(engine3D.renderer)\n",
    "            title = \"Press ESC to Exit\"\n",
    "            cv2.namedWindow(title, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_AUTOSIZE)\n",
    "        else:\n",
    "            # set the 2D image box, show both human pose and image in the notebook\n",
    "            imgbox = widgets.Image(format=\"jpg\", height=windows_height, width=windows_width)\n",
    "            display(widgets.HBox([engine3D.renderer, imgbox]))\n",
    "\n",
    "        skeleton = engine.Skeleton(body_edges=body_edges)\n",
    "\n",
    "        processing_times = collections.deque()\n",
    "\n",
    "        while True:\n",
    "            # grab the frame\n",
    "            frame = player.next()\n",
    "            if frame is None:\n",
    "                print(\"Source ended\")\n",
    "                break\n",
    "\n",
    "            # resize image and change dims to fit neural network input\n",
    "            # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/human-pose-estimation-3d-0001)\n",
    "            scaled_img = cv2.resize(frame, dsize=(model.inputs[0].shape[3], model.inputs[0].shape[2]))\n",
    "\n",
    "            if focal_length < 0:  # Focal length is unknown\n",
    "                focal_length = np.float32(0.8 * scaled_img.shape[1])\n",
    "\n",
    "            # inference start\n",
    "            start_time = time.time()\n",
    "            # get results\n",
    "            inference_result = model_infer(scaled_img, stride)\n",
    "\n",
    "            # inference stop\n",
    "            stop_time = time.time()\n",
    "            processing_times.append(stop_time - start_time)\n",
    "            # Process the point to point coordinates of the data\n",
    "            poses_3d, poses_2d = engine.parse_poses(inference_result, 1, stride, focal_length, True)\n",
    "\n",
    "            # use processing times from last 200 frames\n",
    "            if len(processing_times) > 200:\n",
    "                processing_times.popleft()\n",
    "\n",
    "            processing_time = np.mean(processing_times) * 1000\n",
    "            fps = 1000 / processing_time\n",
    "\n",
    "            if len(poses_3d) > 0:\n",
    "                # From here, you can rotate the 3D point positions using the function \"draw_poses\",\n",
    "                # or you can directly make the correct mapping below to properly display the object image on the screen\n",
    "                poses_3d_copy = poses_3d.copy()\n",
    "                x = poses_3d_copy[:, 0::4]\n",
    "                y = poses_3d_copy[:, 1::4]\n",
    "                z = poses_3d_copy[:, 2::4]\n",
    "                poses_3d[:, 0::4], poses_3d[:, 1::4], poses_3d[:, 2::4] = (\n",
    "                    -z + np.ones(poses_3d[:, 2::4].shape) * 200,\n",
    "                    -y + np.ones(poses_3d[:, 2::4].shape) * 100,\n",
    "                    -x,\n",
    "                )\n",
    "\n",
    "                poses_3d = poses_3d.reshape(poses_3d.shape[0], 19, -1)[:, :, 0:3]\n",
    "                people = skeleton(poses_3d=poses_3d)\n",
    "\n",
    "                try:\n",
    "                    engine3D.scene_remove(skeleton_set)\n",
    "                except Exception:\n",
    "                    pass\n",
    "\n",
    "                engine3D.scene_add(people)\n",
    "                skeleton_set = people\n",
    "\n",
    "                # draw 2D\n",
    "                frame = draw_poses(frame, poses_2d, scaled_img, use_popup)\n",
    "\n",
    "            else:\n",
    "                try:\n",
    "                    engine3D.scene_remove(skeleton_set)\n",
    "                    skeleton_set = None\n",
    "                except Exception:\n",
    "                    pass\n",
    "\n",
    "            cv2.putText(\n",
    "                frame,\n",
    "                f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
    "                (10, 30),\n",
    "                cv2.FONT_HERSHEY_COMPLEX,\n",
    "                0.7,\n",
    "                (0, 0, 255),\n",
    "                1,\n",
    "                cv2.LINE_AA,\n",
    "            )\n",
    "\n",
    "            if use_popup:\n",
    "                cv2.imshow(title, frame)\n",
    "                key = cv2.waitKey(1)\n",
    "                # escape = 27, use ESC to exit\n",
    "                if key == 27:\n",
    "                    break\n",
    "            else:\n",
    "                # encode numpy array to jpg\n",
    "                imgbox.value = cv2.imencode(\n",
    "                    \".jpg\",\n",
    "                    frame,\n",
    "                    params=[cv2.IMWRITE_JPEG_QUALITY, 90],\n",
    "                )[1].tobytes()\n",
    "\n",
    "            engine3D.renderer.render(engine3D.scene, engine3D.cam)\n",
    "\n",
    "    except KeyboardInterrupt:\n",
    "        print(\"Interrupted\")\n",
    "    except RuntimeError as e:\n",
    "        print(e)\n",
    "    finally:\n",
    "        clear_output()\n",
    "        if player is not None:\n",
    "            # stop capturing\n",
    "            player.stop()\n",
    "        if use_popup:\n",
    "            cv2.destroyAllWindows()\n",
    "        if skeleton_set:\n",
    "            engine3D.scene_remove(skeleton_set)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "344840a6-9660-4a11-8b05-729ac2969e28",
   "metadata": {},
   "source": [
    "## Run\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Run, using a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`.\n",
    "\n",
    "> **NOTE**:\n",
    ">\n",
    "> *1. To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (e.g. Binder), the webcam will not work.*\n",
    ">\n",
    "> *2. Popup mode may not work if you run this notebook on a remote computer (e.g. Binder).*\n",
    "\n",
    "If you do not have a webcam, you can still run this demo with a video file. Any [format supported by OpenCV](https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html) will work."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2d1a143-afcb-4f22-a4cc-657a080b70bf",
   "metadata": {},
   "source": [
    "Using the following method, you can click and move your mouse over the picture on the left to interact."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f82e298-5912-48c7-90b5-339aea3c177d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "USE_WEBCAM = False\n",
    "\n",
    "cam_id = 0\n",
    "video_path = \"https://github.com/intel-iot-devkit/sample-videos/raw/master/face-demographics-walking.mp4\"\n",
    "\n",
    "source = cam_id if USE_WEBCAM else video_path\n",
    "\n",
    "run_pose_estimation(source=source, flip=isinstance(source, int), use_popup=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  },
  "openvino_notebooks": {
   "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/3D-pose-estimation-webcam/3D-pose-estimation.gif?raw=true",
   "tags": {
    "categories": [
     "Live Demos"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Pose Estimation"
    ]
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}