Spaces:
Runtime error
Runtime error
File size: 26,261 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
{
"cells": [
{
"cell_type": "markdown",
"id": "9de9a93e-9247-4799-a5bb-2ec1575ae8c2",
"metadata": {},
"source": [
"# Live 3D Human Pose Estimation with OpenVINO\n",
"\n",
"This notebook demonstrates live 3D Human Pose Estimation with OpenVINO via a webcam. We utilize the model [human-pose-estimation-3d-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/human-pose-estimation-3d-0001) from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/). At the end of this notebook, you will see live inference results from your webcam (if available). Alternatively, you can also upload a video file to test out the algorithms.\n",
"**Make sure you have properly installed the [Jupyter extension](https://github.com/jupyter-widgets/pythreejs#jupyterlab) and been using JupyterLab to run the demo as suggested in the `README.md`**\n",
"\n",
"> **NOTE**: _To use a webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a remote server, the webcam will not work. However, you can still do inference on a video file in the final step. This demo utilizes the Python interface in `Three.js` integrated with WebGL to process data from the model inference. These results are processed and displayed in the notebook._\n",
"\n",
"_To ensure that the results are displayed correctly, run the code in a recommended browser on one of the following operating systems:_\n",
"_Ubuntu, Windows: Chrome_\n",
"_macOS: Safari_\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Imports](#Imports)\n",
"- [The model](#The-model)\n",
" - [Download the model](#Download-the-model)\n",
" - [Convert Model to OpenVINO IR format](#Convert-Model-to-OpenVINO-IR-format)\n",
" - [Select inference device](#Select-inference-device)\n",
" - [Load the model](#Load-the-model)\n",
"- [Processing](#Processing)\n",
" - [Model Inference](#Model-Inference)\n",
" - [Draw 2D Pose Overlays](#Draw-2D-Pose-Overlays)\n",
" - [Main Processing Function](#Main-Processing-Function)\n",
"- [Run](#Run)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "7925a51b-26ec-43c5-9660-0705c03d724d",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"**The `pythreejs` extension may not display properly when using a Jupyter Notebook release. Therefore, it is recommended to use Jupyter Lab instead.**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b84c1f5e-502b-4037-b871-9f84b4e8cef0",
"metadata": {},
"outputs": [],
"source": [
"%pip install pythreejs \"openvino-dev>=2024.0.0\" \"opencv-python\" \"torch\" \"onnx\" --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"cell_type": "markdown",
"id": "5a9332fb-1cee-4faa-9555-731ddf0e0df7",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "316ad889-8514-430f-baf4-4f32abd43356",
"metadata": {},
"outputs": [],
"source": [
"import collections\n",
"import time\n",
"from pathlib import Path\n",
"\n",
"import cv2\n",
"import ipywidgets as widgets\n",
"import numpy as np\n",
"from IPython.display import clear_output, display\n",
"import openvino as ov\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"with open(\"notebook_utils.py\", \"w\") as f:\n",
" f.write(r.text)\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/engine3js.py\",\n",
")\n",
"with open(\"engine3js.py\", \"w\") as f:\n",
" f.write(r.text)\n",
"\n",
"import notebook_utils as utils\n",
"import engine3js as engine"
]
},
{
"cell_type": "markdown",
"id": "c96ad61a-59ff-4873-b2f3-3994d6826f51",
"metadata": {},
"source": [
"## The model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Download the model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We use `omz_downloader`, which is a command line tool from the `openvino-dev` package. `omz_downloader` automatically creates a directory structure and downloads the selected model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "31bd89c7-be8a-4b03-ba38-c19d328e332d",
"metadata": {},
"outputs": [],
"source": [
"# directory where model will be downloaded\n",
"base_model_dir = \"model\"\n",
"\n",
"# model name as named in Open Model Zoo\n",
"model_name = \"human-pose-estimation-3d-0001\"\n",
"# selected precision (FP32, FP16)\n",
"precision = \"FP32\"\n",
"\n",
"BASE_MODEL_NAME = f\"{base_model_dir}/public/{model_name}/{model_name}\"\n",
"model_path = Path(BASE_MODEL_NAME).with_suffix(\".pth\")\n",
"onnx_path = Path(BASE_MODEL_NAME).with_suffix(\".onnx\")\n",
"\n",
"ir_model_path = f\"model/public/{model_name}/{precision}/{model_name}.xml\"\n",
"model_weights_path = f\"model/public/{model_name}/{precision}/{model_name}.bin\"\n",
"\n",
"if not model_path.exists():\n",
" download_command = f\"omz_downloader \" f\"--name {model_name} \" f\"--output_dir {base_model_dir}\"\n",
" ! $download_command"
]
},
{
"cell_type": "markdown",
"id": "88f39f76-2f81-4c18-9fda-98ea6a944220",
"metadata": {},
"source": [
"### Convert Model to OpenVINO IR format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The selected model comes from the public directory, which means it must be converted into OpenVINO Intermediate Representation (OpenVINO IR). We use `omz_converter` to convert the ONNX format model to the OpenVINO IR format."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c9bdfdee-c2ef-4710-96c1-8a6a896a8cba",
"metadata": {},
"outputs": [],
"source": [
"if not onnx_path.exists():\n",
" convert_command = (\n",
" f\"omz_converter \" f\"--name {model_name} \" f\"--precisions {precision} \" f\"--download_dir {base_model_dir} \" f\"--output_dir {base_model_dir}\"\n",
" )\n",
" ! $convert_command"
]
},
{
"cell_type": "markdown",
"id": "6458fe97-6e93-4357-bc9a-16394d962e56",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae27d9b7-95ae-4b1c-acb7-c911ec7f698c",
"metadata": {},
"outputs": [],
"source": [
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "markdown",
"id": "986a07ac-d092-4254-848a-dd48f4934fb5",
"metadata": {},
"source": [
"### Load the model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Converted models are located in a fixed structure, which indicates vendor, model name and precision.\n",
"\n",
"First, initialize the inference engine, OpenVINO Runtime. Then, read the network architecture and model weights from the `.bin` and `.xml` files to compile for the desired device. An inference request is then created to infer the compiled model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92a04102-aebf-4976-874b-b98dca97ec48",
"metadata": {},
"outputs": [],
"source": [
"# initialize inference engine\n",
"core = ov.Core()\n",
"# read the network and corresponding weights from file\n",
"model = core.read_model(model=ir_model_path, weights=model_weights_path)\n",
"# load the model on the specified device\n",
"compiled_model = core.compile_model(model=model, device_name=device.value)\n",
"infer_request = compiled_model.create_infer_request()\n",
"input_tensor_name = model.inputs[0].get_any_name()\n",
"\n",
"# get input and output names of nodes\n",
"input_layer = compiled_model.input(0)\n",
"output_layers = list(compiled_model.outputs)"
]
},
{
"cell_type": "markdown",
"id": "5c0ffd17-df71-4178-8df8-db4ccf431621",
"metadata": {},
"source": [
"The input for the model is data from the input image and the outputs are heat maps, PAF (part affinity fields) and features."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1b25847-fc80-41a1-930b-7c304fd1fe70",
"metadata": {},
"outputs": [],
"source": [
"input_layer.any_name, [o.any_name for o in output_layers]"
]
},
{
"cell_type": "markdown",
"id": "48eb5032-a06e-48c1-a3d6-f0fbad9924fb",
"metadata": {},
"source": [
"## Processing\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Model Inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Frames captured from video files or the live webcam are used as the input for the 3D model. This is how you obtain the output heat maps, PAF (part affinity fields) and features."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08f8055b-a6cf-4003-8232-6f73a86d6034",
"metadata": {},
"outputs": [],
"source": [
"def model_infer(scaled_img, stride):\n",
" \"\"\"\n",
" Run model inference on the input image\n",
"\n",
" Parameters:\n",
" scaled_img: resized image according to the input size of the model\n",
" stride: int, the stride of the window\n",
" \"\"\"\n",
"\n",
" # Remove excess space from the picture\n",
" img = scaled_img[\n",
" 0 : scaled_img.shape[0] - (scaled_img.shape[0] % stride),\n",
" 0 : scaled_img.shape[1] - (scaled_img.shape[1] % stride),\n",
" ]\n",
"\n",
" img = np.transpose(img, (2, 0, 1))[None,]\n",
" infer_request.infer({input_tensor_name: img})\n",
" # A set of three inference results is obtained\n",
" results = {name: infer_request.get_tensor(name).data[:] for name in {\"features\", \"heatmaps\", \"pafs\"}}\n",
" # Get the results\n",
" results = (results[\"features\"][0], results[\"heatmaps\"][0], results[\"pafs\"][0])\n",
"\n",
" return results"
]
},
{
"cell_type": "markdown",
"id": "6991403a-4f87-45be-9b3f-d30b23a46dbe",
"metadata": {},
"source": [
"### Draw 2D Pose Overlays\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We need to define some connections between the joints in advance, so that we can draw the structure of the human body in the resulting image after obtaining the inference results.\n",
"Joints are drawn as circles and limbs are drawn as lines. The code is based on the [3D Human Pose Estimation Demo](https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/human_pose_estimation_3d_demo/python) from Open Model Zoo."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "22fd3e08-ed3b-44ac-bd07-4a80130d6681",
"metadata": {},
"outputs": [],
"source": [
"# 3D edge index array\n",
"body_edges = np.array(\n",
" [\n",
" [0, 1],\n",
" [0, 9],\n",
" [9, 10],\n",
" [10, 11], # neck - r_shoulder - r_elbow - r_wrist\n",
" [0, 3],\n",
" [3, 4],\n",
" [4, 5], # neck - l_shoulder - l_elbow - l_wrist\n",
" [1, 15],\n",
" [15, 16], # nose - l_eye - l_ear\n",
" [1, 17],\n",
" [17, 18], # nose - r_eye - r_ear\n",
" [0, 6],\n",
" [6, 7],\n",
" [7, 8], # neck - l_hip - l_knee - l_ankle\n",
" [0, 12],\n",
" [12, 13],\n",
" [13, 14], # neck - r_hip - r_knee - r_ankle\n",
" ]\n",
")\n",
"\n",
"\n",
"body_edges_2d = np.array(\n",
" [\n",
" [0, 1], # neck - nose\n",
" [1, 16],\n",
" [16, 18], # nose - l_eye - l_ear\n",
" [1, 15],\n",
" [15, 17], # nose - r_eye - r_ear\n",
" [0, 3],\n",
" [3, 4],\n",
" [4, 5], # neck - l_shoulder - l_elbow - l_wrist\n",
" [0, 9],\n",
" [9, 10],\n",
" [10, 11], # neck - r_shoulder - r_elbow - r_wrist\n",
" [0, 6],\n",
" [6, 7],\n",
" [7, 8], # neck - l_hip - l_knee - l_ankle\n",
" [0, 12],\n",
" [12, 13],\n",
" [13, 14], # neck - r_hip - r_knee - r_ankle\n",
" ]\n",
")\n",
"\n",
"\n",
"def draw_poses(frame, poses_2d, scaled_img, use_popup):\n",
" \"\"\"\n",
" Draw 2D pose overlays on the image to visualize estimated poses.\n",
" Joints are drawn as circles and limbs are drawn as lines.\n",
"\n",
" :param frame: the input image\n",
" :param poses_2d: array of human joint pairs\n",
" \"\"\"\n",
" for pose in poses_2d:\n",
" pose = np.array(pose[0:-1]).reshape((-1, 3)).transpose()\n",
" was_found = pose[2] > 0\n",
"\n",
" pose[0], pose[1] = (\n",
" pose[0] * frame.shape[1] / scaled_img.shape[1],\n",
" pose[1] * frame.shape[0] / scaled_img.shape[0],\n",
" )\n",
"\n",
" # Draw joints.\n",
" for edge in body_edges_2d:\n",
" if was_found[edge[0]] and was_found[edge[1]]:\n",
" cv2.line(\n",
" frame,\n",
" tuple(pose[0:2, edge[0]].astype(np.int32)),\n",
" tuple(pose[0:2, edge[1]].astype(np.int32)),\n",
" (255, 255, 0),\n",
" 4,\n",
" cv2.LINE_AA,\n",
" )\n",
" # Draw limbs.\n",
" for kpt_id in range(pose.shape[1]):\n",
" if pose[2, kpt_id] != -1:\n",
" cv2.circle(\n",
" frame,\n",
" tuple(pose[0:2, kpt_id].astype(np.int32)),\n",
" 3,\n",
" (0, 255, 255),\n",
" -1,\n",
" cv2.LINE_AA,\n",
" )\n",
"\n",
" return frame"
]
},
{
"cell_type": "markdown",
"id": "a6894ce8-ac91-464d-a7f7-54d09f399f4f",
"metadata": {},
"source": [
"### Main Processing Function\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Run 3D pose estimation on the specified source. It could be either a webcam feed or a video file."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3be526d0-75ad-4bd1-85b1-ca8185eca918",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def run_pose_estimation(source=0, flip=False, use_popup=False, skip_frames=0):\n",
" \"\"\"\n",
" 2D image as input, using OpenVINO as inference backend,\n",
" get joints 3D coordinates, and draw 3D human skeleton in the scene\n",
"\n",
" :param source: The webcam number to feed the video stream with primary webcam set to \"0\", or the video path.\n",
" :param flip: To be used by VideoPlayer function for flipping capture image.\n",
" :param use_popup: False for showing encoded frames over this notebook, True for creating a popup window.\n",
" :param skip_frames: Number of frames to skip at the beginning of the video.\n",
" \"\"\"\n",
"\n",
" focal_length = -1 # default\n",
" stride = 8\n",
" player = None\n",
" skeleton_set = None\n",
"\n",
" try:\n",
" # create video player to play with target fps video_path\n",
" # get the frame from camera\n",
" # You can skip first N frames to fast forward video. change 'skip_first_frames'\n",
" player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_frames)\n",
" # start capturing\n",
" player.start()\n",
"\n",
" input_image = player.next()\n",
" # set the window size\n",
" resize_scale = 450 / input_image.shape[1]\n",
" windows_width = int(input_image.shape[1] * resize_scale)\n",
" windows_height = int(input_image.shape[0] * resize_scale)\n",
"\n",
" # use visualization library\n",
" engine3D = engine.Engine3js(grid=True, axis=True, view_width=windows_width, view_height=windows_height)\n",
"\n",
" if use_popup:\n",
" # display the 3D human pose in this notebook, and origin frame in popup window\n",
" display(engine3D.renderer)\n",
" title = \"Press ESC to Exit\"\n",
" cv2.namedWindow(title, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_AUTOSIZE)\n",
" else:\n",
" # set the 2D image box, show both human pose and image in the notebook\n",
" imgbox = widgets.Image(format=\"jpg\", height=windows_height, width=windows_width)\n",
" display(widgets.HBox([engine3D.renderer, imgbox]))\n",
"\n",
" skeleton = engine.Skeleton(body_edges=body_edges)\n",
"\n",
" processing_times = collections.deque()\n",
"\n",
" while True:\n",
" # grab the frame\n",
" frame = player.next()\n",
" if frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
"\n",
" # resize image and change dims to fit neural network input\n",
" # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/human-pose-estimation-3d-0001)\n",
" scaled_img = cv2.resize(frame, dsize=(model.inputs[0].shape[3], model.inputs[0].shape[2]))\n",
"\n",
" if focal_length < 0: # Focal length is unknown\n",
" focal_length = np.float32(0.8 * scaled_img.shape[1])\n",
"\n",
" # inference start\n",
" start_time = time.time()\n",
" # get results\n",
" inference_result = model_infer(scaled_img, stride)\n",
"\n",
" # inference stop\n",
" stop_time = time.time()\n",
" processing_times.append(stop_time - start_time)\n",
" # Process the point to point coordinates of the data\n",
" poses_3d, poses_2d = engine.parse_poses(inference_result, 1, stride, focal_length, True)\n",
"\n",
" # use processing times from last 200 frames\n",
" if len(processing_times) > 200:\n",
" processing_times.popleft()\n",
"\n",
" processing_time = np.mean(processing_times) * 1000\n",
" fps = 1000 / processing_time\n",
"\n",
" if len(poses_3d) > 0:\n",
" # From here, you can rotate the 3D point positions using the function \"draw_poses\",\n",
" # or you can directly make the correct mapping below to properly display the object image on the screen\n",
" poses_3d_copy = poses_3d.copy()\n",
" x = poses_3d_copy[:, 0::4]\n",
" y = poses_3d_copy[:, 1::4]\n",
" z = poses_3d_copy[:, 2::4]\n",
" poses_3d[:, 0::4], poses_3d[:, 1::4], poses_3d[:, 2::4] = (\n",
" -z + np.ones(poses_3d[:, 2::4].shape) * 200,\n",
" -y + np.ones(poses_3d[:, 2::4].shape) * 100,\n",
" -x,\n",
" )\n",
"\n",
" poses_3d = poses_3d.reshape(poses_3d.shape[0], 19, -1)[:, :, 0:3]\n",
" people = skeleton(poses_3d=poses_3d)\n",
"\n",
" try:\n",
" engine3D.scene_remove(skeleton_set)\n",
" except Exception:\n",
" pass\n",
"\n",
" engine3D.scene_add(people)\n",
" skeleton_set = people\n",
"\n",
" # draw 2D\n",
" frame = draw_poses(frame, poses_2d, scaled_img, use_popup)\n",
"\n",
" else:\n",
" try:\n",
" engine3D.scene_remove(skeleton_set)\n",
" skeleton_set = None\n",
" except Exception:\n",
" pass\n",
"\n",
" cv2.putText(\n",
" frame,\n",
" f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
" (10, 30),\n",
" cv2.FONT_HERSHEY_COMPLEX,\n",
" 0.7,\n",
" (0, 0, 255),\n",
" 1,\n",
" cv2.LINE_AA,\n",
" )\n",
"\n",
" if use_popup:\n",
" cv2.imshow(title, frame)\n",
" key = cv2.waitKey(1)\n",
" # escape = 27, use ESC to exit\n",
" if key == 27:\n",
" break\n",
" else:\n",
" # encode numpy array to jpg\n",
" imgbox.value = cv2.imencode(\n",
" \".jpg\",\n",
" frame,\n",
" params=[cv2.IMWRITE_JPEG_QUALITY, 90],\n",
" )[1].tobytes()\n",
"\n",
" engine3D.renderer.render(engine3D.scene, engine3D.cam)\n",
"\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" clear_output()\n",
" if player is not None:\n",
" # stop capturing\n",
" player.stop()\n",
" if use_popup:\n",
" cv2.destroyAllWindows()\n",
" if skeleton_set:\n",
" engine3D.scene_remove(skeleton_set)"
]
},
{
"cell_type": "markdown",
"id": "344840a6-9660-4a11-8b05-729ac2969e28",
"metadata": {},
"source": [
"## Run\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Run, using a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`.\n",
"\n",
"> **NOTE**:\n",
">\n",
"> *1. To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (e.g. Binder), the webcam will not work.*\n",
">\n",
"> *2. Popup mode may not work if you run this notebook on a remote computer (e.g. Binder).*\n",
"\n",
"If you do not have a webcam, you can still run this demo with a video file. Any [format supported by OpenCV](https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html) will work."
]
},
{
"cell_type": "markdown",
"id": "d2d1a143-afcb-4f22-a4cc-657a080b70bf",
"metadata": {},
"source": [
"Using the following method, you can click and move your mouse over the picture on the left to interact."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f82e298-5912-48c7-90b5-339aea3c177d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"USE_WEBCAM = False\n",
"\n",
"cam_id = 0\n",
"video_path = \"https://github.com/intel-iot-devkit/sample-videos/raw/master/face-demographics-walking.mp4\"\n",
"\n",
"source = cam_id if USE_WEBCAM else video_path\n",
"\n",
"run_pose_estimation(source=source, flip=isinstance(source, int), use_popup=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/3D-pose-estimation-webcam/3D-pose-estimation.gif?raw=true",
"tags": {
"categories": [
"Live Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Pose Estimation"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|