File size: 49,272 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "ef2ed242-3561-464c-8d1c-cc3862e23702",
   "metadata": {},
   "source": [
    "# Instruction following using Databricks Dolly 2.0 and OpenVINO\n",
    "\n",
    "The instruction following is one of the cornerstones of the current generation of large language models(LLMs). Reinforcement learning with human preferences ([RLHF](https://arxiv.org/abs/1909.08593)) and techniques such as [InstructGPT](https://arxiv.org/abs/2203.02155) has been the core foundation of breakthroughs such as ChatGPT and GPT-4. However, these powerful models remain hidden behind APIs and we know very little about their underlying architecture. Instruction-following models are capable of generating text in response to prompts and are often used for tasks like writing assistance, chatbots, and content generation. Many users now interact with these models regularly and even use them for work but the majority of such models remain closed-source and require massive amounts of computational resources to experiment with.\n",
    "\n",
    "[Dolly 2.0](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm) is the first open-source, instruction-following LLM fine-tuned by Databricks on a transparent and freely available dataset that is also open-sourced to use for commercial purposes. That means Dolly 2.0 is available for commercial applications without the need to pay for API access or share data with third parties. Dolly 2.0 exhibits similar characteristics so ChatGPT despite being much smaller.\n",
    "\n",
    "In this tutorial, we consider how to run an instruction-following text generation pipeline using Dolly 2.0 and OpenVINO. We will use a pre-trained model from the [Hugging Face Transformers](https://huggingface.co/docs/transformers/index) library. To simplify the user experience, the [Hugging Face Optimum Intel](https://huggingface.co/docs/optimum/intel/index) library is used to convert the models to OpenVINO™ IR format.\n",
    "\n",
    "The tutorial consists of the following steps:\n",
    "\n",
    "- Install prerequisites\n",
    "- Download and convert the model from a public source using the [OpenVINO integration with Hugging Face Optimum](https://huggingface.co/blog/openvino).\n",
    "- Compress model weights to INT8 with [OpenVINO NNCF](https://github.com/openvinotoolkit/nncf)\n",
    "- Create an instruction-following inference pipeline\n",
    "- Run instruction-following pipeline\n",
    "\n",
    "\n",
    "## About Dolly 2.0\n",
    "\n",
    "Dolly 2.0 is an instruction-following large language model trained on the Databricks machine-learning platform that is licensed for commercial use. It is based on [Pythia](https://github.com/EleutherAI/pythia) and is trained on ~15k instruction/response fine-tuning records generated by Databricks employees in various capability domains, including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization.\n",
    "Dolly 2.0 works by processing natural language instructions and generating responses that follow the given instructions. It can be used for a wide range of applications, including closed question-answering, summarization, and generation.\n",
    "\n",
    "The model training process was inspired by [InstructGPT](https://arxiv.org/abs/2203.02155). To train InstructGPT models, the core technique is reinforcement learning from human feedback (RLHF), This technique uses human preferences as a reward signal to fine-tune models, which is important as the safety and alignment problems required to be solved are complex and subjective, and aren’t fully captured by simple automatic metrics. More details about the InstructGPT approach can be found in OpenAI [blog post](https://openai.com/research/instruction-following) \n",
    "The breakthrough discovered with InstructGPT is that language models don’t need larger and larger training sets. By using human-evaluated question-and-answer training, authors were able to train a better language model using one hundred times fewer parameters than the previous model. Databricks used a similar approach to create a prompt and response dataset called they call [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k), a corpus of more than 15,000 records generated by thousands of Databricks employees to enable large language models to exhibit the magical interactivity of InstructGPT. More details about the model and dataset can be found in [Databricks blog post](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm) and [repo](https://github.com/databrickslabs/dolly)\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "f97c435a",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Prerequisites](#Prerequisites)\n",
    "- [Convert model using Optimum-CLI tool](#Convert-model-using-Optimum-CLI-tool)\n",
    "- [Compress model weights](#Compress-model-weights)\n",
    "    - [Weights Compression using Optimum-CLI](#Weights-Compression-using-Optimum-CLI)\n",
    "- [Select model variant and inference device](#Select-model-variant-and-inference-device)\n",
    "- [Instantiate Model using Optimum Intel](#Instantiate-Model-using-Optimum-Intel)\n",
    "- [Create an instruction-following inference pipeline](#Create-an-instruction-following-inference-pipeline)\n",
    "    - [Setup imports](#Setup-imports)\n",
    "    - [Prepare template for user prompt](#Prepare-template-for-user-prompt)\n",
    "    - [Helpers for output parsing](#Helpers-for-output-parsing)\n",
    "    - [Main generation function](#Main-generation-function)\n",
    "    - [Helpers for application](#Helpers-for-application)\n",
    "- [Run instruction-following pipeline](#Run-instruction-following-pipeline)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "08aa16b1-d2f6-4a3a-abfb-5ec278133c80",
   "metadata": {},
   "source": [
    "## Prerequisites\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "First, we should install the [Hugging Face Optimum](https://huggingface.co/docs/optimum/installation) library accelerated by OpenVINO integration.\n",
    "The Hugging Face Optimum Intel API is a high-level API that enables us to convert and quantize models from the Hugging Face Transformers library to the OpenVINO™ IR format. For more details, refer to the [Hugging Face Optimum Intel documentation](https://huggingface.co/docs/optimum/intel/inference)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4421fc85-bed6-4a62-b8fa-19c7ba474891",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -Uq pip\n",
    "%pip uninstall -q -y optimum optimum-intel\n",
    "%pip install --pre -Uq openvino openvino-tokenizers[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly\n",
    "%pip install -q \"diffusers>=0.16.1\" \"transformers>=4.33.0\" \"torch>=2.1\" \"nncf>=2.10.0\" onnx \"gradio>=4.19\" --extra-index-url https://download.pytorch.org/whl/cpu\n",
    "%pip install -q \"git+https://github.com/huggingface/optimum-intel.git\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "e145f4ab-1753-4eec-a369-575a93448462",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Convert model using Optimum-CLI tool\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "🤗 [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) is the interface between the 🤗 [Transformers](https://huggingface.co/docs/transformers/index) and [Diffusers](https://huggingface.co/docs/diffusers/index) libraries and OpenVINO to accelerate end-to-end pipelines on Intel architectures. It provides ease-to-use cli interface for exporting models to [OpenVINO Intermediate Representation (IR)](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) format.\n",
    "\n",
    "The command bellow demonstrates basic command for model export with `optimum-cli`\n",
    "\n",
    "```bash\n",
    "optimum-cli export openvino --model <model_id_or_path> --task <task> <out_dir>\n",
    "```\n",
    "\n",
    "where `--model` argument is model id from HuggingFace Hub or local directory with model (saved using `.save_pretrained` method), `--task ` is one of [supported task](https://huggingface.co/docs/optimum/exporters/task_manager) that exported model should solve. For LLMs it will be `text-generation-with-past`. If model initialization requires to use remote code, `--trust-remote-code` flag additionally should be passed."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "a38d7f46-1a27-48ea-9064-170cd6fdeb5f",
   "metadata": {},
   "source": [
    "## Compress model weights\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "\n",
    "The [Weights Compression](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html) algorithm is aimed at compressing the weights of the models and can be used to optimize the model footprint and performance of large models where the size of weights is relatively larger than the size of activations, for example, Large Language Models (LLM). Compared to INT8 compression, INT4 compression improves performance even more, but introduces a minor drop in prediction quality.\n",
    "\n",
    "\n",
    "### Weights Compression using Optimum-CLI\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "You can also apply fp16, 8-bit or 4-bit weight compression on the Linear, Convolutional and Embedding layers when exporting your model with the CLI by setting `--weight-format` to respectively fp16, int8 or int4. This type of optimization allows to reduce the memory footprint and inference latency.\n",
    "By default the quantization scheme for int8/int4 will be [asymmetric](https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md#asymmetric-quantization), to make it [symmetric](https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md#symmetric-quantization) you can add `--sym`.\n",
    "\n",
    "For INT4 quantization you can also specify the following arguments :\n",
    "- The `--group-size` parameter will define the group size to use for quantization, -1 it will results in per-column quantization.\n",
    "- The `--ratio` parameter controls the ratio between 4-bit and 8-bit quantization. If set to 0.9, it means that 90% of the layers will be quantized to int4 while 10% will be quantized to int8.\n",
    "\n",
    "Smaller group_size and ratio values usually improve accuracy at the sacrifice of the model size and inference latency.\n",
    "\n",
    ">**Note**: There may be no speedup for INT4/INT8 compressed models on dGPU."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b30a0744-0a25-47f0-a2c5-9a7822131034",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ec46027bc7f04402a939d0d8de46e115",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Checkbox(value=True, description='Prepare INT4 model')"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "639eb1acfa314f778132b0466163ef38",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Checkbox(value=False, description='Prepare INT8 model')"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "332ca84dafac474ebeb9b9b6f89a70ec",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Checkbox(value=False, description='Prepare FP16 model')"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Markdown, display\n",
    "import ipywidgets as widgets\n",
    "\n",
    "prepare_int4_model = widgets.Checkbox(\n",
    "    value=True,\n",
    "    description=\"Prepare INT4 model\",\n",
    "    disabled=False,\n",
    ")\n",
    "prepare_int8_model = widgets.Checkbox(\n",
    "    value=False,\n",
    "    description=\"Prepare INT8 model\",\n",
    "    disabled=False,\n",
    ")\n",
    "prepare_fp16_model = widgets.Checkbox(\n",
    "    value=False,\n",
    "    description=\"Prepare FP16 model\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "display(prepare_int4_model)\n",
    "display(prepare_int8_model)\n",
    "display(prepare_fp16_model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "5dc61e85-176f-455c-be36-6001cbc17a30",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "\n",
    "model_id = \"databricks/dolly-v2-3b\"\n",
    "model_path = Path(\"dolly-v2-3b\")\n",
    "\n",
    "fp16_model_dir = model_path / \"FP16\"\n",
    "int8_model_dir = model_path / \"INT8_compressed_weights\"\n",
    "int4_model_dir = model_path / \"INT4_compressed_weights\"\n",
    "\n",
    "\n",
    "def convert_to_fp16():\n",
    "    if (fp16_model_dir / \"openvino_model.xml\").exists():\n",
    "        return\n",
    "    fp16_model_dir.mkdir(parents=True, exist_ok=True)\n",
    "    export_command_base = \"optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16\".format(model_id)\n",
    "    export_command = export_command_base + \" \" + str(fp16_model_dir)\n",
    "    display(Markdown(\"**Export command:**\"))\n",
    "    display(Markdown(f\"`{export_command}`\"))\n",
    "    ! $export_command\n",
    "\n",
    "\n",
    "def convert_to_int8():\n",
    "    if (int8_model_dir / \"openvino_model.xml\").exists():\n",
    "        return\n",
    "    int8_model_dir.mkdir(parents=True, exist_ok=True)\n",
    "    export_command_base = \"optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8\".format(model_id)\n",
    "    export_command = export_command_base + \" \" + str(int8_model_dir)\n",
    "    display(Markdown(\"**Export command:**\"))\n",
    "    display(Markdown(f\"`{export_command}`\"))\n",
    "    ! $export_command\n",
    "\n",
    "\n",
    "def convert_to_int4():\n",
    "    if (int4_model_dir / \"openvino_model.xml\").exists():\n",
    "        return\n",
    "    int4_model_dir.mkdir(parents=True, exist_ok=True)\n",
    "    export_command_base = \"optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4\".format(model_id)\n",
    "    export_command = export_command_base + \" \" + str(int4_model_dir)\n",
    "    display(Markdown(\"**Export command:**\"))\n",
    "    display(Markdown(f\"`{export_command}`\"))\n",
    "    ! $export_command\n",
    "\n",
    "\n",
    "if prepare_fp16_model.value:\n",
    "    convert_to_fp16()\n",
    "if prepare_int8_model.value:\n",
    "    convert_to_int8()\n",
    "if prepare_int4_model.value:\n",
    "    convert_to_int4()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b65fb768-6125-4426-870b-07ebc1a94c07",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Size of model with INT4 compressed weights is 2154.54 MB\n"
     ]
    }
   ],
   "source": [
    "fp16_weights = fp16_model_dir / \"openvino_model.bin\"\n",
    "int8_weights = int8_model_dir / \"openvino_model.bin\"\n",
    "int4_weights = int4_model_dir / \"openvino_model.bin\"\n",
    "\n",
    "if fp16_weights.exists():\n",
    "    print(f\"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB\")\n",
    "for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):\n",
    "    if compressed_weights.exists():\n",
    "        print(f\"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB\")\n",
    "    if compressed_weights.exists() and fp16_weights.exists():\n",
    "        print(f\"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "367f84f8-33e8-4ad6-bd40-e6fd41d2d703",
   "metadata": {},
   "source": [
    "### Select model variant and inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f59ee1bc-029f-45f3-90ba-a29db4ce7a1c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "31e97b72a4e346ed856bad6a24fbf164",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Model to run:', options=('INT4',), value='INT4')"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "available_models = []\n",
    "if int4_model_dir.exists():\n",
    "    available_models.append(\"INT4\")\n",
    "if int8_model_dir.exists():\n",
    "    available_models.append(\"INT8\")\n",
    "if fp16_model_dir.exists():\n",
    "    available_models.append(\"FP16\")\n",
    "\n",
    "model_to_run = widgets.Dropdown(\n",
    "    options=available_models,\n",
    "    value=available_models[0],\n",
    "    description=\"Model to run:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "model_to_run"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "6ddd57de-9f41-403c-bccc-8d3118654a24",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "af1d662119844324a207cc5f47dfd126",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='CPU')"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "import openvino as ov\n",
    "\n",
    "core = ov.Core()\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"CPU\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "dbea489f-7ff1-49a1-a14d-5d19fd0abfb2",
   "metadata": {},
   "source": [
    "## Instantiate Model using Optimum Intel\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Optimum Intel can be used to load optimized models from the [Hugging Face Hub](https://huggingface.co/docs/optimum/intel/hf.co/models) and create pipelines to run an inference with OpenVINO Runtime using Hugging Face APIs. The Optimum Inference models are API compatible with Hugging Face Transformers models.  This means we just need to replace `AutoModelForXxx` class with the corresponding `OVModelForXxx` class.\n",
    "\n",
    "Below is an example of the Dolly model\n",
    "\n",
    "```diff\n",
    "-from transformers import AutoModelForCausalLM\n",
    "+from optimum.intel.openvino import OVModelForCausalLM\n",
    "from transformers import AutoTokenizer, pipeline\n",
    "\n",
    "model_id = \"databricks/dolly-v2-3b\"\n",
    "-model = AutoModelForCausalLM.from_pretrained(model_id)\n",
    "+model = OVModelForCausalLM.from_pretrained(model_id, export=True)\n",
    "```\n",
    "\n",
    "Model class initialization starts with calling `from_pretrained` method. When downloading and converting Transformers model, the parameter `export=True` should be added (as we already converted model before, we do not need to provide this parameter). We can save the converted model for the next usage with the `save_pretrained` method.\n",
    "Tokenizer class and pipelines API are compatible with Optimum models.\n",
    "\n",
    "You can find more details about OpenVINO LLM inference using HuggingFace Optimum API in [LLM inference guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "91f42296-627d-44ff-a1cb-936bb6f87992",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'\n",
      "2024-05-01 10:43:29.010748: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2024-05-01 10:43:29.012724: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-05-01 10:43:29.047558: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-05-01 10:43:29.048434: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2024-05-01 10:43:29.742257: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
      "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/bitsandbytes/cextension.py:34: UserWarning: The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable.\n",
      "  warn(\"The installed version of bitsandbytes was compiled without GPU support. \"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cadam32bit_grad_fp32\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:\n",
      "    PyTorch 2.0.1+cu118 with CUDA 1108 (you have 2.1.2+cpu)\n",
      "    Python  3.8.18 (you have 3.8.10)\n",
      "  Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)\n",
      "  Memory-efficient attention, SwiGLU, sparse and more won't be available.\n",
      "  Set XFORMERS_MORE_DETAILS=1 for more details\n",
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading model from dolly-v2-3b/INT4_compressed_weights\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Compiling the model to CPU ...\n"
     ]
    }
   ],
   "source": [
    "from pathlib import Path\n",
    "from transformers import AutoTokenizer\n",
    "from optimum.intel.openvino import OVModelForCausalLM\n",
    "\n",
    "if model_to_run.value == \"INT4\":\n",
    "    model_dir = int4_model_dir\n",
    "elif model_to_run.value == \"INT8\":\n",
    "    model_dir = int8_model_dir\n",
    "else:\n",
    "    model_dir = fp16_model_dir\n",
    "print(f\"Loading model from {model_dir}\")\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_dir)\n",
    "\n",
    "current_device = device.value\n",
    "\n",
    "ov_config = {\"PERFORMANCE_HINT\": \"LATENCY\", \"NUM_STREAMS\": \"1\", \"CACHE_DIR\": \"\"}\n",
    "\n",
    "ov_model = OVModelForCausalLM.from_pretrained(model_dir, device=current_device, ov_config=ov_config)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b6d9c4a5-ef75-4076-9f1c-f45a2259ec46",
   "metadata": {},
   "source": [
    "## Create an instruction-following inference pipeline\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    " \n",
    " The `run_generation` function accepts user-provided text input, tokenizes it, and runs the generation process. Text generation is an iterative process, where each next token depends on previously generated until a maximum number of tokens or stop generation condition is not reached. To obtain intermediate generation results without waiting until when generation is finished, we will use [`TextIteratorStreamer`](https://huggingface.co/docs/transformers/main/en/internal/generation_utils#transformers.TextIteratorStreamer), provided as part of HuggingFace [Streaming API](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming).\n",
    " \n",
    "The diagram below illustrates how the instruction-following pipeline works\n",
    "\n",
    "![generation pipeline)](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/e881f4a4-fcc8-427a-afe1-7dd80aebd66e)\n",
    "\n",
    "As can be seen, on the first iteration, the user provided instructions converted to token ids using a tokenizer, then prepared input provided to the model. The model generates probabilities for all tokens in logits format  The way the next token will be selected over predicted probabilities is driven by the selected decoding methodology. You can find more information about the most popular decoding methods in this [blog](https://huggingface.co/blog/how-to-generate).\n",
    "\n",
    "There are several parameters that can control text generation quality:\n",
    "\n",
    "  * `Temperature` is a parameter used to control the level of creativity in AI-generated text. By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.  \n",
    "  Consider the following example: The AI model has to complete the sentence \"The cat is ____.\" with the following token probabilities:  \n",
    "\n",
    "    playing: 0.5  \n",
    "    sleeping: 0.25  \n",
    "    eating: 0.15  \n",
    "    driving: 0.05  \n",
    "    flying: 0.05  \n",
    "\n",
    "    - **Low temperature** (e.g., 0.2): The AI model becomes more focused and deterministic, choosing tokens with the highest probability, such as \"playing.\"  \n",
    "    - **Medium temperature** (e.g., 1.0): The AI model maintains a balance between creativity and focus, selecting tokens based on their probabilities without significant bias, such as \"playing,\" \"sleeping,\" or \"eating.\"  \n",
    "    - **High temperature** (e.g., 2.0): The AI model becomes more adventurous, increasing the chances of selecting less likely tokens, such as \"driving\" and \"flying.\"\n",
    "  * `Top-p`, also known as nucleus sampling, is a parameter used to control the range of tokens considered by the AI model based on their cumulative probability. By adjusting the `top-p` value, you can influence the AI model's token selection, making it more focused or diverse.\n",
    "  Using the same example with the cat, consider the following top_p settings:  \n",
    "    - **Low top_p** (e.g., 0.5): The AI model considers only tokens with the highest cumulative probability, such as \"playing.\"  \n",
    "    - **Medium top_p** (e.g., 0.8): The AI model considers tokens with a higher cumulative probability, such as \"playing,\" \"sleeping,\" and \"eating.\"  \n",
    "    - **High top_p** (e.g., 1.0): The AI model considers all tokens, including those with lower probabilities, such as \"driving\" and \"flying.\" \n",
    "  * `Top-k` is another popular sampling strategy. In comparison with Top-P, which chooses from the smallest possible set of words whose cumulative probability exceeds the probability P, in Top-K sampling K most likely next words are filtered and the probability mass is redistributed among only those K next words. In our example with cat, if k=3, then only \"playing\", \"sleeping\" and \"eating\" will be taken into account as possible next word.\n",
    "\n",
    "To optimize the generation process and use memory more efficiently, the `use_cache=True` option is enabled. Since the output side is auto-regressive, an output token hidden state remains the same once computed for every further generation step. Therefore, recomputing it every time you want to generate a new token seems wasteful. With the cache, the model saves the hidden state once it has been computed. The model only computes the one for the most recently generated output token at each time step, re-using the saved ones for hidden tokens. This reduces the generation complexity from O(n^3) to O(n^2) for a transformer model. More details about how it works can be found in this [article](https://scale.com/blog/pytorch-improvements#Text%20Translation). With this option, the model gets the previous step's hidden states (cached attention keys and values) as input and additionally provides hidden states for the current step as output. It means for all next iterations, it is enough to provide only a new token obtained from the previous step and cached key values to get the next token prediction. \n",
    "\n",
    "The generation cycle repeats until the end of the sequence token is reached or it also can be interrupted when maximum tokens will be generated. As already mentioned before, we can enable printing current generated tokens without waiting until when the whole generation is finished using Streaming API, it adds a new token to the output queue and then prints them when they are ready."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b9b5da4d-d2fd-440b-b204-7fbc6966dd1f",
   "metadata": {},
   "source": [
    "### Setup imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "6f976094-8603-42c4-8f18-a32ba6d7192e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from threading import Thread\n",
    "from time import perf_counter\n",
    "from typing import List\n",
    "import gradio as gr\n",
    "from transformers import AutoTokenizer, TextIteratorStreamer\n",
    "import numpy as np"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "c58611d6-0a91-4efd-976e-4221acbb43cd",
   "metadata": {},
   "source": [
    "### Prepare template for user prompt\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "For effective generation, model expects to have input in specific format. The code below prepare template for passing user instruction into model with providing additional context."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "52ac10a5-3141-4227-8f0b-0617acd027c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "INSTRUCTION_KEY = \"### Instruction:\"\n",
    "RESPONSE_KEY = \"### Response:\"\n",
    "END_KEY = \"### End\"\n",
    "INTRO_BLURB = \"Below is an instruction that describes a task. Write a response that appropriately completes the request.\"\n",
    "\n",
    "# This is the prompt that is used for generating responses using an already trained model.  It ends with the response\n",
    "# key, where the job of the model is to provide the completion that follows it (i.e. the response itself).\n",
    "PROMPT_FOR_GENERATION_FORMAT = \"\"\"{intro}\n",

    "\n",

    "{instruction_key}\n",

    "{instruction}\n",

    "\n",

    "{response_key}\n",

    "\"\"\".format(\n",
    "    intro=INTRO_BLURB,\n",
    "    instruction_key=INSTRUCTION_KEY,\n",
    "    instruction=\"{instruction}\",\n",
    "    response_key=RESPONSE_KEY,\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "27a01739-1363-42ef-927f-6a340bdbe7ba",
   "metadata": {},
   "source": [
    "### Helpers for output parsing\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Model was retrained to finish generation using special token `### End` the code below find its id for using it as generation stop-criteria."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "524e72f4-8750-48ff-b002-e558d03b3302",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int:\n",
    "    \"\"\"\n",

    "    Gets the token ID for a given string that has been added to the tokenizer as a special token.\n",

    "\n",

    "    When training, we configure the tokenizer so that the sequences like \"### Instruction:\" and \"### End\" are\n",

    "    treated specially and converted to a single, new token.  This retrieves the token ID each of these keys map to.\n",

    "\n",

    "    Args:\n",

    "        tokenizer (PreTrainedTokenizer): the tokenizer\n",

    "        key (str): the key to convert to a single token\n",

    "\n",

    "    Raises:\n",

    "        RuntimeError: if more than one ID was generated\n",

    "\n",

    "    Returns:\n",

    "        int: the token ID for the given key\n",

    "    \"\"\"\n",
    "    token_ids = tokenizer.encode(key)\n",
    "    if len(token_ids) > 1:\n",
    "        raise ValueError(f\"Expected only a single token for '{key}' but found {token_ids}\")\n",
    "    return token_ids[0]\n",
    "\n",
    "\n",
    "tokenizer_response_key = next(\n",
    "    (token for token in tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)),\n",
    "    None,\n",
    ")\n",
    "\n",
    "end_key_token_id = None\n",
    "if tokenizer_response_key:\n",
    "    try:\n",
    "        end_key_token_id = get_special_token_id(tokenizer, END_KEY)\n",
    "        # Ensure generation stops once it generates \"### End\"\n",
    "    except ValueError:\n",
    "        pass"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "583202d2-6d29-4729-af2e-232d3ee0bc2c",
   "metadata": {},
   "source": [
    "### Main generation function\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "As it was discussed above, `run_generation` function is the entry point for starting generation. It gets provided input instruction as parameter and returns model response."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "67fb4f9d-5877-48d8-8eff-c30ff6974d7a",
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_generation(\n",
    "    user_text: str,\n",
    "    top_p: float,\n",
    "    temperature: float,\n",
    "    top_k: int,\n",
    "    max_new_tokens: int,\n",
    "    perf_text: str,\n",
    "):\n",
    "    \"\"\"\n",

    "    Text generation function\n",

    "\n",

    "    Parameters:\n",

    "      user_text (str): User-provided instruction for a generation.\n",

    "      top_p (float):  Nucleus sampling. If set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for a generation.\n",

    "      temperature (float): The value used to module the logits distribution.\n",

    "      top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering.\n",

    "      max_new_tokens (int): Maximum length of generated sequence.\n",

    "      perf_text (str): Content of text field for printing performance results.\n",

    "    Returns:\n",

    "      model_output (str) - model-generated text\n",

    "      perf_text (str) - updated perf text filed content\n",

    "    \"\"\"\n",
    "\n",
    "    # Prepare input prompt according to model expected template\n",
    "    prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=user_text)\n",
    "\n",
    "    # Tokenize the user text.\n",
    "    model_inputs = tokenizer(prompt_text, return_tensors=\"pt\")\n",
    "\n",
    "    # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer\n",
    "    # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.\n",
    "    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)\n",
    "    generate_kwargs = dict(\n",
    "        model_inputs,\n",
    "        streamer=streamer,\n",
    "        max_new_tokens=max_new_tokens,\n",
    "        do_sample=True,\n",
    "        top_p=top_p,\n",
    "        temperature=float(temperature),\n",
    "        top_k=top_k,\n",
    "        eos_token_id=end_key_token_id,\n",
    "    )\n",
    "    t = Thread(target=ov_model.generate, kwargs=generate_kwargs)\n",
    "    t.start()\n",
    "\n",
    "    # Pull the generated text from the streamer, and update the model output.\n",
    "    model_output = \"\"\n",
    "    per_token_time = []\n",
    "    num_tokens = 0\n",
    "    start = perf_counter()\n",
    "    for new_text in streamer:\n",
    "        current_time = perf_counter() - start\n",
    "        model_output += new_text\n",
    "        perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens)\n",
    "        yield model_output, perf_text\n",
    "        start = perf_counter()\n",
    "    return model_output, perf_text"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "562f2dcf-75ef-4554-85e3-e04f486776cc",
   "metadata": {},
   "source": [
    "### Helpers for application\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "For making interactive user interface we will use Gradio library. The code bellow provides useful functions used for communication with UI elements."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f114944f-c060-44ba-ba59-02cb2516554c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def estimate_latency(\n",
    "    current_time: float,\n",
    "    current_perf_text: str,\n",
    "    new_gen_text: str,\n",
    "    per_token_time: List[float],\n",
    "    num_tokens: int,\n",
    "):\n",
    "    \"\"\"\n",

    "    Helper function for performance estimation\n",

    "\n",

    "    Parameters:\n",

    "      current_time (float): This step time in seconds.\n",

    "      current_perf_text (str): Current content of performance UI field.\n",

    "      new_gen_text (str): New generated text.\n",

    "      per_token_time (List[float]): history of performance from previous steps.\n",

    "      num_tokens (int): Total number of generated tokens.\n",

    "\n",

    "    Returns:\n",

    "      update for performance text field\n",

    "      update for a total number of tokens\n",

    "    \"\"\"\n",
    "    num_current_toks = len(tokenizer.encode(new_gen_text))\n",
    "    num_tokens += num_current_toks\n",
    "    per_token_time.append(num_current_toks / current_time)\n",
    "    if len(per_token_time) > 10 and len(per_token_time) % 4 == 0:\n",
    "        current_bucket = per_token_time[:-10]\n",
    "        return (\n",
    "            f\"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}\",\n",
    "            num_tokens,\n",
    "        )\n",
    "    return current_perf_text, num_tokens\n",
    "\n",
    "\n",
    "def reset_textbox(instruction: str, response: str, perf: str):\n",
    "    \"\"\"\n",

    "    Helper function for resetting content of all text fields\n",

    "\n",

    "    Parameters:\n",

    "      instruction (str): Content of user instruction field.\n",

    "      response (str): Content of model response field.\n",

    "      perf (str): Content of performance info filed\n",

    "\n",

    "    Returns:\n",

    "      empty string for each placeholder\n",

    "    \"\"\"\n",
    "    return \"\", \"\", \"\"\n",
    "\n",
    "\n",
    "def select_device(device_str: str, current_text: str = \"\", progress: gr.Progress = gr.Progress()):\n",
    "    \"\"\"\n",

    "    Helper function for uploading model on the device.\n",

    "\n",

    "    Parameters:\n",

    "      device_str (str): Device name.\n",

    "      current_text (str): Current content of user instruction field (used only for backup purposes, temporally replacing it on the progress bar during model loading).\n",

    "      progress (gr.Progress): gradio progress tracker\n",

    "    Returns:\n",

    "      current_text\n",

    "    \"\"\"\n",
    "    if device_str != ov_model._device:\n",
    "        ov_model.request = None\n",
    "        ov_model._device = device_str\n",
    "\n",
    "        for i in progress.tqdm(range(1), desc=f\"Model loading on {device_str}\"):\n",
    "            ov_model.compile()\n",
    "    return current_text"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "50d918a9-1cbe-49a5-85ad-5e370c8af7f5",
   "metadata": {},
   "source": [
    "## Run instruction-following pipeline\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Now, we are ready to explore model capabilities. This demo provides a simple interface that allows communication with a model using text instruction. Type your instruction into the `User instruction` field or select one from predefined examples and click on the `Submit` button to start generation. Additionally, you can modify advanced generation parameters:\n",
    "\n",
    "* `Device` - allows switching inference device. Please note, every time when new device is selected, model will be recompiled and this takes some time.\n",
    "* `Max New Tokens` - maximum size of generated text.\n",
    "* `Top-p (nucleus sampling)` -  if set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for a generation.\n",
    "* `Top-k` - the number of highest probability vocabulary tokens to keep for top-k-filtering.\n",
    "* `Temperature` - the value used to module the logits distribution."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "a00c2293-15b1-4734-b9b4-1abb524bb8d6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "available_devices = ov.Core().available_devices + [\"AUTO\"]\n",
    "\n",
    "examples = [\n",
    "    \"Give me recipe for pizza with pineapple\",\n",
    "    \"Write me a tweet about new OpenVINO release\",\n",
    "    \"Explain difference between CPU and GPU\",\n",
    "    \"Give five ideas for great weekend with family\",\n",
    "    \"Do Androids dream of Electric sheep?\",\n",
    "    \"Who is Dolly?\",\n",
    "    \"Please give me advice how to write resume?\",\n",
    "    \"Name 3 advantages to be a cat\",\n",
    "    \"Write instructions on how to become a good AI engineer\",\n",
    "    \"Write a love letter to my best friend\",\n",
    "]\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(\n",
    "        \"# Instruction following using Databricks Dolly 2.0 and OpenVINO.\\n\"\n",
    "        \"Provide insturction which describes a task below or select among predefined examples and model writes response that performs requested task.\"\n",
    "    )\n",
    "\n",
    "    with gr.Row():\n",
    "        with gr.Column(scale=4):\n",
    "            user_text = gr.Textbox(\n",
    "                placeholder=\"Write an email about an alpaca that likes flan\",\n",
    "                label=\"User instruction\",\n",
    "            )\n",
    "            model_output = gr.Textbox(label=\"Model response\", interactive=False)\n",
    "            performance = gr.Textbox(label=\"Performance\", lines=1, interactive=False)\n",
    "            with gr.Column(scale=1):\n",
    "                button_clear = gr.Button(value=\"Clear\")\n",
    "                button_submit = gr.Button(value=\"Submit\")\n",
    "            gr.Examples(examples, user_text)\n",
    "        with gr.Column(scale=1):\n",
    "            device = gr.Dropdown(choices=available_devices, value=current_device, label=\"Device\")\n",
    "            max_new_tokens = gr.Slider(\n",
    "                minimum=1,\n",
    "                maximum=1000,\n",
    "                value=256,\n",
    "                step=1,\n",
    "                interactive=True,\n",
    "                label=\"Max New Tokens\",\n",
    "            )\n",
    "            top_p = gr.Slider(\n",
    "                minimum=0.05,\n",
    "                maximum=1.0,\n",
    "                value=0.92,\n",
    "                step=0.05,\n",
    "                interactive=True,\n",
    "                label=\"Top-p (nucleus sampling)\",\n",
    "            )\n",
    "            top_k = gr.Slider(\n",
    "                minimum=0,\n",
    "                maximum=50,\n",
    "                value=0,\n",
    "                step=1,\n",
    "                interactive=True,\n",
    "                label=\"Top-k\",\n",
    "            )\n",
    "            temperature = gr.Slider(\n",
    "                minimum=0.1,\n",
    "                maximum=5.0,\n",
    "                value=0.8,\n",
    "                step=0.1,\n",
    "                interactive=True,\n",
    "                label=\"Temperature\",\n",
    "            )\n",
    "\n",
    "    user_text.submit(\n",
    "        run_generation,\n",
    "        [user_text, top_p, temperature, top_k, max_new_tokens, performance],\n",
    "        [model_output, performance],\n",
    "    )\n",
    "    button_submit.click(select_device, [device, user_text], [user_text])\n",
    "    button_submit.click(\n",
    "        run_generation,\n",
    "        [user_text, top_p, temperature, top_k, max_new_tokens, performance],\n",
    "        [model_output, performance],\n",
    "    )\n",
    "    button_clear.click(\n",
    "        reset_textbox,\n",
    "        [user_text, model_output, performance],\n",
    "        [user_text, model_output, performance],\n",
    "    )\n",
    "    device.change(select_device, [device, user_text], [user_text])\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    try:\n",
    "        demo.queue().launch(debug=True, height=800)\n",
    "    except Exception:\n",
    "        demo.queue().launch(debug=True, share=True, height=800)\n",
    "\n",
    "# If you are launching remotely, specify server_name and server_port\n",
    "# EXAMPLE: `demo.launch(server_name='your server name', server_port='server port in int')`\n",
    "# To learn more please refer to the Gradio docs: https://gradio.app/docs/"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "openvino_notebooks": {
   "imageUrl": "https://user-images.githubusercontent.com/29454499/237291423-022f07d2-966b-4be2-9a1c-98f1cf0691c2.png",
   "tags": {
    "categories": [
     "Model Demos",
     "AI Trends"
    ],
    "libraries": [],
    "other": [
     "LLM"
    ],
    "tasks": [
     "Text Generation"
    ]
   }
  },
  "vscode": {
   "interpreter": {
    "hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}