Spaces:
Runtime error
Runtime error
File size: 33,360 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
import math
from operator import itemgetter
import cv2
import numpy as np
from pythreejs import *
class Engine3js:
"""
The implementation of these interfaces depends on Pythreejs, so make
sure you install and authorize the Jupyter Widgets plug-in correctly.
Attributes:
view_width, view_height: Size of the view window.
position: Position of the camera.
lookAtPos: The point at which the camera looks at.
axis_size: The size of axis.
grid_length: grid size, length == width.
grid_num: grid number.
grid: If use grid.
axis: If use axis.
"""
def __init__(
self,
view_width=455,
view_height=256,
position=[300, 100, 0],
lookAtPos=[0, 0, 0],
axis_size=300,
grid_length=600,
grid_num=20,
grid=False,
axis=False,
):
self.view_width = view_width
self.view_height = view_height
self.position = position
# set the camera
self.cam = PerspectiveCamera(position=self.position, aspect=self.view_width / self.view_height)
self.cam.lookAt(lookAtPos)
# x,y,z axis
self.axis = AxesHelper(axis_size) # axes length
# set grid size
self.gridHelper = GridHelper(grid_length, grid_num)
# set scene
self.scene = Scene(
children=[
self.cam,
DirectionalLight(position=[3, 5, 1], intensity=0.6),
AmbientLight(intensity=0.5),
]
)
# add axis or grid
if grid:
self.scene.add(self.gridHelper)
if axis:
self.scene.add(self.axis)
# render the objects in scene
self.renderer = Renderer(
camera=self.cam,
scene=self.scene,
controls=[OrbitControls(controlling=self.cam)],
width=self.view_width,
height=self.view_height,
)
# display(renderer4)
def get_width(self):
return self.view_width
def plot(self):
self.renderer.render(self.scene, self.cam)
def scene_add(self, object):
self.scene.add(object)
def scene_remove(self, object):
self.scene.remove(object)
class Geometry:
"""
This is the geometry base class that defines buffer and material.
"""
def __init__(self, name="geometry"):
self.geometry = None
self.material = None
self.name = name
def get_Name():
return self.name
class Skeleton(Geometry):
"""
This is the class for drawing human body poses.
"""
def __init__(self, name="skeleton", lineWidth=3, body_edges=[]):
super(Skeleton, self).__init__(name)
self.material = LineBasicMaterial(vertexColors="VertexColors", linewidth=lineWidth)
self.colorSet = BufferAttribute(
np.array(
[
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
],
dtype=np.float32,
),
normalized=False,
)
# self.geometry.attributes["color"] = self.colorSet
self.body_edges = body_edges
def __call__(self, poses_3d):
poses = []
for pose_position_tmp in poses_3d:
bones = []
for edge in self.body_edges:
# put pair of points as limbs
bones.append(pose_position_tmp[edge[0]])
bones.append(pose_position_tmp[edge[1]])
bones = np.asarray(bones, dtype=np.float32)
# You can find the api in https://github.com/jupyter-widgets/pythreejs
self.geometry = BufferGeometry(
attributes={
"position": BufferAttribute(bones, normalized=False),
# It defines limbs' color
"color": self.colorSet,
}
)
pose = LineSegments(self.geometry, self.material)
poses.append(pose)
# self.geometry.close()
return poses
def plot(self, pose_points=None):
return self.__call__(pose_points)
class Cloudpoint(Geometry):
"""
This is the class for drawing cloud points.
"""
def __init__(self, name="cloudpoint", points=[], point_size=5, line=None, points_color="blue"):
super(Cloudpoint, self).__init__(name)
self.material = PointsMaterial(size=point_size, color=points_color)
self.points = points
self.line = line
def __call__(self, points_3d):
self.geometry = BufferGeometry(
attributes={
"position": BufferAttribute(points_3d, normalized=False),
# It defines points' vertices' color
"color": BufferAttribute(
np.array(
[
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
],
dtype=np.float32,
),
normalized=False,
),
},
)
cloud_points = Points(self.geometry, self.material)
if self.line is not None:
g1 = BufferGeometry(
attributes={
"position": BufferAttribute(line, normalized=False),
# It defines limbs' color
"color": BufferAttribute(
# Here you can set vertex colors, if you set the 'color' option = vertexes
np.array(
[
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
],
dtype=np.float32,
),
normalized=False,
),
},
)
m1 = LineBasicMaterial(color="red", linewidth=3)
facemesh = LineSegments(g1, m1)
return [cloud_points, facemesh]
return cloud_points
def Box_bounding(Geometry):
def __init__(self, name="Box", lineWidth=3):
super(Box_bounding, self).__init__(name)
self.material = LineBasicMaterial(vertexColors="VertexColors", linewidth=lineWidth)
self.edge = []
def __call__(self, points=None):
pass
class Pose:
num_kpts = 18
kpt_names = [
"neck",
"nose",
"l_sho",
"l_elb",
"l_wri",
"l_hip",
"l_knee",
"l_ank",
"r_sho",
"r_elb",
"r_wri",
"r_hip",
"r_knee",
"r_ank",
"r_eye",
"l_eye",
"r_ear",
"l_ear",
]
sigmas = (
np.array(
[
0.79,
0.26,
0.79,
0.72,
0.62,
1.07,
0.87,
0.89,
0.79,
0.72,
0.62,
1.07,
0.87,
0.89,
0.25,
0.25,
0.35,
0.35,
],
dtype=np.float32,
)
/ 10.0
)
vars = (sigmas * 2) ** 2
last_id = -1
color = [0, 224, 255]
def __init__(self, keypoints, confidence):
super().__init__()
self.keypoints = keypoints
self.confidence = confidence
found_keypoints = np.zeros((np.count_nonzero(keypoints[:, 0] != -1), 2), dtype=np.int32)
found_kpt_id = 0
for kpt_id in range(keypoints.shape[0]):
if keypoints[kpt_id, 0] == -1:
continue
found_keypoints[found_kpt_id] = keypoints[kpt_id]
found_kpt_id += 1
self.bbox = cv2.boundingRect(found_keypoints)
self.id = None
self.translation_filter = [
OneEuroFilter(freq=80, beta=0.01),
OneEuroFilter(freq=80, beta=0.01),
OneEuroFilter(freq=80, beta=0.01),
]
def update_id(self, id=None):
self.id = id
if self.id is None:
self.id = Pose.last_id + 1
Pose.last_id += 1
def filter(self, translation):
filtered_translation = []
for coordinate_id in range(3):
filtered_translation.append(self.translation_filter[coordinate_id](translation[coordinate_id]))
return filtered_translation
def get_similarity(a, b, threshold=0.5):
num_similar_kpt = 0
for kpt_id in range(Pose.num_kpts):
if a.keypoints[kpt_id, 0] != -1 and b.keypoints[kpt_id, 0] != -1:
distance = np.sum((a.keypoints[kpt_id] - b.keypoints[kpt_id]) ** 2)
area = max(a.bbox[2] * a.bbox[3], b.bbox[2] * b.bbox[3])
similarity = np.exp(-distance / (2 * (area + np.spacing(1)) * Pose.vars[kpt_id]))
if similarity > threshold:
num_similar_kpt += 1
return num_similar_kpt
def propagate_ids(previous_poses, current_poses, threshold=3):
"""Propagate poses ids from previous frame results. Id is propagated,
if there are at least `threshold` similar keypoints between pose from previous frame and current.
:param previous_poses: poses from previous frame with ids
:param current_poses: poses from current frame to assign ids
:param threshold: minimal number of similar keypoints between poses
:return: None
"""
current_poses_sorted_ids = list(range(len(current_poses)))
current_poses_sorted_ids = sorted(
current_poses_sorted_ids,
key=lambda pose_id: current_poses[pose_id].confidence,
reverse=True,
) # match confident poses first
mask = np.ones(len(previous_poses), dtype=np.int32)
for current_pose_id in current_poses_sorted_ids:
best_matched_id = None
best_matched_pose_id = None
best_matched_iou = 0
for previous_pose_id in range(len(previous_poses)):
if not mask[previous_pose_id]:
continue
iou = get_similarity(current_poses[current_pose_id], previous_poses[previous_pose_id])
if iou > best_matched_iou:
best_matched_iou = iou
best_matched_pose_id = previous_poses[previous_pose_id].id
best_matched_id = previous_pose_id
if best_matched_iou >= threshold:
mask[best_matched_id] = 0
else: # pose not similar to any previous
best_matched_pose_id = None
current_poses[current_pose_id].update_id(best_matched_pose_id)
if best_matched_pose_id is not None:
current_poses[current_pose_id].translation_filter = previous_poses[best_matched_id].translation_filter
AVG_PERSON_HEIGHT = 180
# pelvis (body center) is missing, id == 2
map_id_to_panoptic = [1, 0, 9, 10, 11, 3, 4, 5, 12, 13, 14, 6, 7, 8, 15, 16, 17, 18]
limbs = [[18, 17, 1], [16, 15, 1], [5, 4, 3], [8, 7, 6], [11, 10, 9], [14, 13, 12]]
def get_root_relative_poses(inference_results):
features, heatmap, paf_map = inference_results
upsample_ratio = 4
found_poses = extract_poses(heatmap[0:-1], paf_map, upsample_ratio)[0]
# scale coordinates to features space
found_poses[:, 0:-1:3] /= upsample_ratio
found_poses[:, 1:-1:3] /= upsample_ratio
poses_2d = []
num_kpt_panoptic = 19
num_kpt = 18
for pose_id in range(found_poses.shape[0]):
if found_poses[pose_id, 5] == -1: # skip pose if is not found neck
continue
pose_2d = np.ones(num_kpt_panoptic * 3 + 1, dtype=np.float32) * -1 # +1 for pose confidence
for kpt_id in range(num_kpt):
if found_poses[pose_id, kpt_id * 3 + 2] != -1:
x_2d, y_2d = found_poses[pose_id, kpt_id * 3 : kpt_id * 3 + 2]
conf = found_poses[pose_id, kpt_id * 3 + 2]
pose_2d[map_id_to_panoptic[kpt_id] * 3] = x_2d # just repacking
pose_2d[map_id_to_panoptic[kpt_id] * 3 + 1] = y_2d
pose_2d[map_id_to_panoptic[kpt_id] * 3 + 2] = conf
pose_2d[-1] = found_poses[pose_id, -1]
poses_2d.append(pose_2d)
keypoint_treshold = 0.1
poses_3d = np.ones((len(poses_2d), num_kpt_panoptic * 4), dtype=np.float32) * -1
for pose_id in range(len(poses_3d)):
if poses_2d[pose_id][2] > keypoint_treshold:
neck_2d = poses_2d[pose_id][:2].astype(int)
# read all pose coordinates at neck location
for kpt_id in range(num_kpt_panoptic):
map_3d = features[kpt_id * 3 : (kpt_id + 1) * 3]
poses_3d[pose_id][kpt_id * 4] = map_3d[0, neck_2d[1], neck_2d[0]] * AVG_PERSON_HEIGHT
poses_3d[pose_id][kpt_id * 4 + 1] = map_3d[1, neck_2d[1], neck_2d[0]] * AVG_PERSON_HEIGHT
poses_3d[pose_id][kpt_id * 4 + 2] = map_3d[2, neck_2d[1], neck_2d[0]] * AVG_PERSON_HEIGHT
poses_3d[pose_id][kpt_id * 4 + 3] = poses_2d[pose_id][kpt_id * 3 + 2]
# refine keypoints coordinates at corresponding limbs locations
for limb in limbs:
for kpt_id_from in limb:
if poses_2d[pose_id][kpt_id_from * 3 + 2] > keypoint_treshold:
for kpt_id_where in limb:
kpt_from_2d = poses_2d[pose_id][kpt_id_from * 3 : kpt_id_from * 3 + 2].astype(int)
map_3d = features[kpt_id_where * 3 : (kpt_id_where + 1) * 3]
poses_3d[pose_id][kpt_id_where * 4] = map_3d[0, kpt_from_2d[1], kpt_from_2d[0]] * AVG_PERSON_HEIGHT
poses_3d[pose_id][kpt_id_where * 4 + 1] = map_3d[1, kpt_from_2d[1], kpt_from_2d[0]] * AVG_PERSON_HEIGHT
poses_3d[pose_id][kpt_id_where * 4 + 2] = map_3d[2, kpt_from_2d[1], kpt_from_2d[0]] * AVG_PERSON_HEIGHT
break
return poses_3d, np.array(poses_2d), features.shape
previous_poses_2d = []
def parse_poses(inference_results, input_scale, stride, fx, is_video=False):
global previous_poses_2d
poses_3d, poses_2d, features_shape = get_root_relative_poses(inference_results)
poses_2d_scaled = []
for pose_2d in poses_2d:
num_kpt = (pose_2d.shape[0] - 1) // 3
pose_2d_scaled = np.ones(pose_2d.shape[0], dtype=np.float32) * -1 # +1 for pose confidence
for kpt_id in range(num_kpt):
if pose_2d[kpt_id * 3 + 2] != -1:
pose_2d_scaled[kpt_id * 3] = int(pose_2d[kpt_id * 3] * stride / input_scale)
pose_2d_scaled[kpt_id * 3 + 1] = int(pose_2d[kpt_id * 3 + 1] * stride / input_scale)
pose_2d_scaled[kpt_id * 3 + 2] = pose_2d[kpt_id * 3 + 2]
pose_2d_scaled[-1] = pose_2d[-1]
poses_2d_scaled.append(pose_2d_scaled)
if is_video: # track poses ids
current_poses_2d = []
for pose_id in range(len(poses_2d_scaled)):
pose_keypoints = np.ones((Pose.num_kpts, 2), dtype=np.int32) * -1
for kpt_id in range(Pose.num_kpts):
if poses_2d_scaled[pose_id][kpt_id * 3 + 2] != -1.0: # keypoint is found
pose_keypoints[kpt_id, 0] = int(poses_2d_scaled[pose_id][kpt_id * 3 + 0])
pose_keypoints[kpt_id, 1] = int(poses_2d_scaled[pose_id][kpt_id * 3 + 1])
pose = Pose(pose_keypoints, poses_2d_scaled[pose_id][-1])
current_poses_2d.append(pose)
propagate_ids(previous_poses_2d, current_poses_2d)
previous_poses_2d = current_poses_2d
translated_poses_3d = []
# translate poses
for pose_id in range(len(poses_3d)):
pose_3d = poses_3d[pose_id].reshape((-1, 4)).transpose()
pose_2d = poses_2d[pose_id][:-1].reshape((-1, 3)).transpose()
num_valid = np.count_nonzero(pose_2d[2] != -1)
pose_3d_valid = np.zeros((3, num_valid), dtype=np.float32)
pose_2d_valid = np.zeros((2, num_valid), dtype=np.float32)
valid_id = 0
for kpt_id in range(pose_3d.shape[1]):
if pose_2d[2, kpt_id] == -1:
continue
pose_3d_valid[:, valid_id] = pose_3d[0:3, kpt_id]
pose_2d_valid[:, valid_id] = pose_2d[0:2, kpt_id]
valid_id += 1
pose_2d_valid[0] = pose_2d_valid[0] - features_shape[2] / 2
pose_2d_valid[1] = pose_2d_valid[1] - features_shape[1] / 2
mean_3d = np.expand_dims(pose_3d_valid.mean(axis=1), axis=1)
mean_2d = np.expand_dims(pose_2d_valid.mean(axis=1), axis=1)
numerator = np.trace(
np.dot(
(pose_3d_valid[:2, :] - mean_3d[:2, :]).transpose(),
pose_3d_valid[:2, :] - mean_3d[:2, :],
)
).sum()
numerator = np.sqrt(numerator)
denominator = np.sqrt(
np.trace(
np.dot(
(pose_2d_valid[:2, :] - mean_2d[:2, :]).transpose(),
pose_2d_valid[:2, :] - mean_2d[:2, :],
)
).sum()
)
mean_2d = np.array([mean_2d[0, 0], mean_2d[1, 0], fx * input_scale / stride])
mean_3d = np.array([mean_3d[0, 0], mean_3d[1, 0], 0])
translation = numerator / denominator * mean_2d - mean_3d
if is_video:
translation = current_poses_2d[pose_id].filter(translation)
for kpt_id in range(19):
pose_3d[0, kpt_id] = pose_3d[0, kpt_id] + translation[0]
pose_3d[1, kpt_id] = pose_3d[1, kpt_id] + translation[1]
pose_3d[2, kpt_id] = pose_3d[2, kpt_id] + translation[2]
translated_poses_3d.append(pose_3d.transpose().reshape(-1))
return np.array(translated_poses_3d), np.array(poses_2d_scaled)
def get_alpha(rate=30, cutoff=1):
tau = 1 / (2 * math.pi * cutoff)
te = 1 / rate
return 1 / (1 + tau / te)
class LowPassFilter:
def __init__(self):
self.x_previous = None
def __call__(self, x, alpha=0.5):
if self.x_previous is None:
self.x_previous = x
return x
x_filtered = alpha * x + (1 - alpha) * self.x_previous
self.x_previous = x_filtered
return x_filtered
class OneEuroFilter:
def __init__(self, freq=15, mincutoff=1, beta=1, dcutoff=1):
self.freq = freq
self.mincutoff = mincutoff
self.beta = beta
self.dcutoff = dcutoff
self.filter_x = LowPassFilter()
self.filter_dx = LowPassFilter()
self.x_previous = None
self.dx = None
def __call__(self, x):
if self.dx is None:
self.dx = 0
else:
self.dx = (x - self.x_previous) * self.freq
dx_smoothed = self.filter_dx(self.dx, get_alpha(self.freq, self.dcutoff))
cutoff = self.mincutoff + self.beta * abs(dx_smoothed)
x_filtered = self.filter_x(x, get_alpha(self.freq, cutoff))
self.x_previous = x
return x_filtered
BODY_PARTS_KPT_IDS = [
[1, 2],
[1, 5],
[2, 3],
[3, 4],
[5, 6],
[6, 7],
[1, 8],
[8, 9],
[9, 10],
[1, 11],
[11, 12],
[12, 13],
[1, 0],
[0, 14],
[14, 16],
[0, 15],
[15, 17],
[2, 16],
[5, 17],
]
BODY_PARTS_PAF_IDS = (
[12, 13],
[20, 21],
[14, 15],
[16, 17],
[22, 23],
[24, 25],
[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9],
[10, 11],
[28, 29],
[30, 31],
[34, 35],
[32, 33],
[36, 37],
[18, 19],
[26, 27],
)
def linspace2d(start, stop, n=10):
points = 1 / (n - 1) * (stop - start)
return points[:, None] * np.arange(n) + start[:, None]
def extract_keypoints(heatmap, all_keypoints, total_keypoint_num):
heatmap[heatmap < 0.1] = 0
heatmap_with_borders = np.pad(heatmap, [(2, 2), (2, 2)], mode="constant")
heatmap_center = heatmap_with_borders[1 : heatmap_with_borders.shape[0] - 1, 1 : heatmap_with_borders.shape[1] - 1]
heatmap_left = heatmap_with_borders[1 : heatmap_with_borders.shape[0] - 1, 2 : heatmap_with_borders.shape[1]]
heatmap_right = heatmap_with_borders[1 : heatmap_with_borders.shape[0] - 1, 0 : heatmap_with_borders.shape[1] - 2]
heatmap_up = heatmap_with_borders[2 : heatmap_with_borders.shape[0], 1 : heatmap_with_borders.shape[1] - 1]
heatmap_down = heatmap_with_borders[0 : heatmap_with_borders.shape[0] - 2, 1 : heatmap_with_borders.shape[1] - 1]
heatmap_peaks = (heatmap_center > heatmap_left) & (heatmap_center > heatmap_right) & (heatmap_center > heatmap_up) & (heatmap_center > heatmap_down)
heatmap_peaks = heatmap_peaks[1 : heatmap_center.shape[0] - 1, 1 : heatmap_center.shape[1] - 1]
keypoints = list(zip(np.nonzero(heatmap_peaks)[1], np.nonzero(heatmap_peaks)[0])) # (w, h)
keypoints = sorted(keypoints, key=itemgetter(0))
suppressed = np.zeros(len(keypoints), np.uint8)
keypoints_with_score_and_id = []
keypoint_num = 0
for i in range(len(keypoints)):
if suppressed[i]:
continue
for j in range(i + 1, len(keypoints)):
if math.sqrt((keypoints[i][0] - keypoints[j][0]) ** 2 + (keypoints[i][1] - keypoints[j][1]) ** 2) < 6:
suppressed[j] = 1
keypoint_with_score_and_id = (
keypoints[i][0],
keypoints[i][1],
heatmap[keypoints[i][1], keypoints[i][0]],
total_keypoint_num + keypoint_num,
)
keypoints_with_score_and_id.append(keypoint_with_score_and_id)
keypoint_num += 1
all_keypoints.append(keypoints_with_score_and_id)
return keypoint_num
def group_keypoints(all_keypoints_by_type, pafs, pose_entry_size=20, min_paf_score=0.05):
pose_entries = []
all_keypoints = np.array([item for sublist in all_keypoints_by_type for item in sublist])
for part_id in range(len(BODY_PARTS_PAF_IDS)):
part_pafs = pafs[BODY_PARTS_PAF_IDS[part_id]]
kpts_a = all_keypoints_by_type[BODY_PARTS_KPT_IDS[part_id][0]]
kpts_b = all_keypoints_by_type[BODY_PARTS_KPT_IDS[part_id][1]]
num_kpts_a = len(kpts_a)
num_kpts_b = len(kpts_b)
kpt_a_id = BODY_PARTS_KPT_IDS[part_id][0]
kpt_b_id = BODY_PARTS_KPT_IDS[part_id][1]
if num_kpts_a == 0 and num_kpts_b == 0: # no keypoints for such body part
continue
elif num_kpts_a == 0: # body part has just 'b' keypoints
for i in range(num_kpts_b):
num = 0
for j in range(len(pose_entries)): # check if already in some pose, was added by another body part
if pose_entries[j][kpt_b_id] == kpts_b[i][3]:
num += 1
continue
if num == 0:
pose_entry = np.ones(pose_entry_size) * -1
pose_entry[kpt_b_id] = kpts_b[i][3] # keypoint idx
pose_entry[-1] = 1 # num keypoints in pose
pose_entry[-2] = kpts_b[i][2] # pose score
pose_entries.append(pose_entry)
continue
elif num_kpts_b == 0: # body part has just 'a' keypoints
for i in range(num_kpts_a):
num = 0
for j in range(len(pose_entries)):
if pose_entries[j][kpt_a_id] == kpts_a[i][3]:
num += 1
continue
if num == 0:
pose_entry = np.ones(pose_entry_size) * -1
pose_entry[kpt_a_id] = kpts_a[i][3]
pose_entry[-1] = 1
pose_entry[-2] = kpts_a[i][2]
pose_entries.append(pose_entry)
continue
connections = []
for i in range(num_kpts_a):
kpt_a = np.array(kpts_a[i][0:2])
for j in range(num_kpts_b):
kpt_b = np.array(kpts_b[j][0:2])
mid_point = [(), ()]
mid_point[0] = (
int(round((kpt_a[0] + kpt_b[0]) * 0.5)),
int(round((kpt_a[1] + kpt_b[1]) * 0.5)),
)
mid_point[1] = mid_point[0]
vec = [kpt_b[0] - kpt_a[0], kpt_b[1] - kpt_a[1]]
vec_norm = math.sqrt(vec[0] ** 2 + vec[1] ** 2)
if vec_norm == 0:
continue
vec[0] /= vec_norm
vec[1] /= vec_norm
cur_point_score = vec[0] * part_pafs[0, mid_point[0][1], mid_point[0][0]] + vec[1] * part_pafs[1, mid_point[1][1], mid_point[1][0]]
height_n = pafs.shape[1] // 2
success_ratio = 0
point_num = 10 # number of points to integration over paf
ratio = 0
if cur_point_score > -100:
passed_point_score = 0
passed_point_num = 0
x, y = linspace2d(kpt_a, kpt_b)
for point_idx in range(point_num):
px = int(x[point_idx])
py = int(y[point_idx])
paf = part_pafs[:, py, px]
cur_point_score = vec[0] * paf[0] + vec[1] * paf[1]
if cur_point_score > min_paf_score:
passed_point_score += cur_point_score
passed_point_num += 1
success_ratio = passed_point_num / point_num
if passed_point_num > 0:
ratio = passed_point_score / passed_point_num
ratio += min(height_n / vec_norm - 1, 0)
if ratio > 0 and success_ratio > 0.8:
score_all = ratio + kpts_a[i][2] + kpts_b[j][2]
connections.append([i, j, ratio, score_all])
if len(connections) > 0:
connections = sorted(connections, key=itemgetter(2), reverse=True)
num_connections = min(num_kpts_a, num_kpts_b)
has_kpt_a = np.zeros(num_kpts_a, dtype=np.int32)
has_kpt_b = np.zeros(num_kpts_b, dtype=np.int32)
filtered_connections = []
for row in range(len(connections)):
if len(filtered_connections) == num_connections:
break
i, j, cur_point_score = connections[row][0:3]
if not has_kpt_a[i] and not has_kpt_b[j]:
filtered_connections.append([kpts_a[i][3], kpts_b[j][3], cur_point_score])
has_kpt_a[i] = 1
has_kpt_b[j] = 1
connections = filtered_connections
if len(connections) == 0:
continue
if part_id == 0:
pose_entries = [np.ones(pose_entry_size) * -1 for _ in range(len(connections))]
for i in range(len(connections)):
pose_entries[i][BODY_PARTS_KPT_IDS[0][0]] = connections[i][0]
pose_entries[i][BODY_PARTS_KPT_IDS[0][1]] = connections[i][1]
pose_entries[i][-1] = 2
pose_entries[i][-2] = np.sum(all_keypoints[connections[i][0:2], 2]) + connections[i][2]
elif part_id == 17 or part_id == 18:
kpt_a_id = BODY_PARTS_KPT_IDS[part_id][0]
kpt_b_id = BODY_PARTS_KPT_IDS[part_id][1]
for i in range(len(connections)):
for j in range(len(pose_entries)):
if pose_entries[j][kpt_a_id] == connections[i][0] and pose_entries[j][kpt_b_id] == -1:
pose_entries[j][kpt_b_id] = connections[i][1]
elif pose_entries[j][kpt_b_id] == connections[i][1] and pose_entries[j][kpt_a_id] == -1:
pose_entries[j][kpt_a_id] = connections[i][0]
continue
else:
kpt_a_id = BODY_PARTS_KPT_IDS[part_id][0]
kpt_b_id = BODY_PARTS_KPT_IDS[part_id][1]
for i in range(len(connections)):
num = 0
for j in range(len(pose_entries)):
if pose_entries[j][kpt_a_id] == connections[i][0]:
pose_entries[j][kpt_b_id] = connections[i][1]
num += 1
pose_entries[j][-1] += 1
pose_entries[j][-2] += all_keypoints[connections[i][1], 2] + connections[i][2]
if num == 0:
pose_entry = np.ones(pose_entry_size) * -1
pose_entry[kpt_a_id] = connections[i][0]
pose_entry[kpt_b_id] = connections[i][1]
pose_entry[-1] = 2
pose_entry[-2] = np.sum(all_keypoints[connections[i][0:2], 2]) + connections[i][2]
pose_entries.append(pose_entry)
filtered_entries = []
for i in range(len(pose_entries)):
if pose_entries[i][-1] < 3 or (pose_entries[i][-2] / pose_entries[i][-1] < 0.2):
continue
filtered_entries.append(pose_entries[i])
pose_entries = np.asarray(filtered_entries)
return pose_entries, all_keypoints
def extract_poses(heatmaps, pafs, upsample_ratio):
heatmaps = np.transpose(heatmaps, (1, 2, 0))
pafs = np.transpose(pafs, (1, 2, 0))
heatmaps = cv2.resize(heatmaps, dsize=None, fx=upsample_ratio, fy=upsample_ratio)
pafs = cv2.resize(pafs, dsize=None, fx=upsample_ratio, fy=upsample_ratio)
heatmaps = np.transpose(heatmaps, (2, 0, 1))
pafs = np.transpose(pafs, (2, 0, 1))
num_keypoints = heatmaps.shape[0]
total_keypoints_num = 0
all_keypoints_by_type = []
for kpt_idx in range(num_keypoints):
total_keypoints_num += extract_keypoints(heatmaps[kpt_idx], all_keypoints_by_type, total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs)
found_poses = []
for pose_entry in pose_entries:
if len(pose_entry) == 0:
continue
pose_keypoints = np.ones((num_keypoints * 3 + 1), dtype=np.float32) * -1
for kpt_id in range(num_keypoints):
if pose_entry[kpt_id] != -1.0:
pose_keypoints[kpt_id * 3 + 0] = all_keypoints[int(pose_entry[kpt_id]), 0]
pose_keypoints[kpt_id * 3 + 1] = all_keypoints[int(pose_entry[kpt_id]), 1]
pose_keypoints[kpt_id * 3 + 2] = all_keypoints[int(pose_entry[kpt_id]), 2]
pose_keypoints[-1] = pose_entry[18]
found_poses.append(pose_keypoints)
if not found_poses:
return np.array(found_poses, dtype=np.float32).reshape((0, 0)), None
return np.array(found_poses, dtype=np.float32), None
|