Spaces:
Runtime error
Runtime error
import re | |
from typing import Union | |
from langchain_core.agents import AgentAction, AgentFinish | |
from langchain_core.exceptions import OutputParserException | |
from langchain.agents.agent import AgentOutputParser | |
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS | |
FINAL_ANSWER_ACTIONS = ["Final Answer:**", "Final Answer:", "Final Answer**:", "Final Answer"] | |
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = "Invalid Format: Missing 'Action:' after 'Thought:" | |
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "Invalid Format: Missing 'Action Input:' after 'Action:'" | |
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "Parsing LLM output produced both a final answer and a parse-able action:" | |
class ReActSingleInputOutputParser(AgentOutputParser): | |
"""Parses ReAct-style LLM calls that have a single tool input. | |
Expects output to be in one of two formats. | |
If the output signals that an action should be taken, | |
should be in the below format. This will result in an AgentAction | |
being returned. | |
``` | |
Thought: agent thought here | |
Action: search | |
Action Input: what is the temperature in SF? | |
``` | |
If the output signals that a final answer should be given, | |
should be in the below format. This will result in an AgentFinish | |
being returned. | |
``` | |
Thought: agent thought here | |
Final Answer: The temperature is 100 degrees | |
``` | |
""" | |
def get_format_instructions(self) -> str: | |
return FORMAT_INSTRUCTIONS | |
def parse(self, text: str) -> Union[AgentAction, AgentFinish]: | |
for final_answer_action in FINAL_ANSWER_ACTIONS: | |
includes_answer = final_answer_action in text | |
if includes_answer: | |
return AgentFinish({"output": text.split(final_answer_action)[-1].strip()}, text) | |
regex = r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" | |
action_match = re.search(regex, text, re.DOTALL) | |
if action_match: | |
action = action_match.group(1).strip() | |
action_input = action_match.group(2) | |
tool_input = action_input.strip(" ") | |
tool_input = tool_input.strip('"') | |
return AgentAction(action, tool_input, text) | |
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): | |
raise OutputParserException( | |
f"Could not parse LLM output: `{text}`", | |
observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, | |
llm_output=text, | |
send_to_llm=True, | |
) | |
elif not re.search(r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL): | |
raise OutputParserException( | |
f"Could not parse LLM output: `{text}`", | |
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, | |
llm_output=text, | |
send_to_llm=True, | |
) | |
else: | |
raise OutputParserException(f"Could not parse LLM output: `{text}`") | |
def _type(self) -> str: | |
return "react-single-input" | |