import gradio as gr from transformers import AutoTokenizer, TextIteratorStreamer # Define the models and their configurations model_name = "phi-2" # Replace with the actual model name model_configuration = { "toeknizer_kwargs": {SUPPORTED_LLM_MODELS[model_id.value]} # Replace with the actual tokenizer configuration } # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {}) # Define the Gradio interface def main(): with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox( placeholder="Write an email about an alpaca that likes flan", label="User instruction", ) model_output = gr.Textbox(label="Model response", interactive=False) performance = gr.Textbox(label="Performance", lines=1, interactive=False) with gr.Column(scale=1): button_clear = gr.Button(value="Clear") button_submit = gr.Button(value="Submit") # Run the Gradio interface iface = gr.Interface(fn=main, inputs=user_text, outputs=model_output, performance=performance, live=True) iface.launch()