mamiksik's picture
bug fixes
30d3f5d
raw
history blame
2.24 kB
import re
import gradio as gr
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mamiksik/CodeBERTa-commit-message-autocomplete")
model = AutoModelForMaskedLM.from_pretrained("mamiksik/CodeBERTa-commit-message-autocomplete")
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
def parse_files(patch) -> str:
accumulator = []
lines = patch.splitlines()
filename_before = None
for line in lines:
if line.startswith("index") or line.startswith("diff"):
continue
if line.startswith("---"):
filename_before = line.split(" ", 1)[1][1:]
continue
if line.startswith("+++"):
filename_after = line.split(" ", 1)[1][1:]
if filename_before == filename_after:
accumulator.append(f"<ide><path>{filename_before}")
else:
accumulator.append(f"<add><path>{filename_after}")
accumulator.append(f"<del><path>{filename_before}")
continue
line = re.sub("@@[^@@]*@@", "", line)
if len(line) == 0:
continue
if line[0] == "+":
line = line.replace("+", "<add>", 1)
elif line[0] == "-":
line = line.replace("-", "<del>", 1)
else:
line = f"<ide>{line}"
accumulator.append(line)
return '\n'.join(accumulator)
def predict(patch, commit_message):
input_text = parse_files(patch) + "</sep></sep><msg> " + commit_message + "</sep>"
token_count = tokenizer(input_text, return_tensors="pt").input_ids.shape[1]
result = pipe.predict(input_text)
return token_count, input_text, {pred['token_str']: round(pred['score'], 3) for pred in result}
iface = gr.Interface(fn=predict, inputs=[
gr.Textbox(label="Patch (as generated by git diff)"),
gr.Textbox(label="Commit message (with one <mask> token)"),
], outputs=[
gr.Textbox(label="Token count"),
gr.Textbox(label="Parsed patch"),
gr.Label(label="Predictions")
], examples=[["""
def main():
- name = "John"
print("Hello World")
""", "Remove <mask> variable"]
])
if __name__ == "__main__":
iface.launch()