File size: 6,653 Bytes
93c1293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from PIL import Image
from ultralytics import YOLO
import numpy as np
import cv2
import torch
from utils import readb64, img2base64
model_int8 = YOLO('weights/best.torchscript', task='detect')
labels = {
0: 'mask_weared_incorrect',
1: 'with_mask',
2: 'without_mask',
}
def inference_on_image(path):
results = model_int8(path)
img = cv2.imread(path, cv2.COLOR_BGR2RGB)
for box in results[0].boxes:
img = draw_bbox_prediction(img, box)
cv2.imshow('Detected Image', img)
cv2.waitKey(0)
return results
def inference_on_video(path, vid_stride=10):
results = model_int8(path, vid_stride=10, stream=True)
cap = cv2.VideoCapture(path)
ret, img = cap.read()
frame_counter = 0
while True:
ret, img = cap.read()
if ret:
if frame_counter % 10 == 0:
result = next(results)
for box in result.boxes:
img = draw_bbox_prediction(img, box)
else:
cap.release()
break
cv2.imshow('Detected Image', img)
frame_counter += 1
k = cv2.waitKey(5) & 0xFF
if k == 27:
cap.release()
cv2.destroyAllWindows()
break
return results
def draw_bbox_prediction(img, box):
cls = box.cls.item()
confidence = box.conf.item()
label = labels[cls]
x1, y1, x2, y2 = map(int, list(box.xyxy.numpy()[0]))
scaler = (x2-x1)/(640/8)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 102, 255), int(2*scaler))
img = cv2.rectangle(img, (x1, y1 - int(20*scaler)), (x1 + (x2 - x1)*3, y1), (0, 102, 255), -1)
img = cv2.putText(img, "{}: {:.3f}".format(label, confidence), (x1,y1-5),cv2.FONT_HERSHEY_SIMPLEX,0.6*scaler,(255,255,255), int(1*scaler))
return img
class ImagePipeline:
def __init__(self, device='cpu', gpu_id=0, weights='weights/best.torchscript'):
self.model = YOLO(weights, task='detect')
def preprocess(self, data):
image_base64 = data.pop("images", data)
if not type(image_base64) == list:
image_base64 = [image_base64]
elif len(image_base64) > 1:
raise Exception("ImagePipeline only accepts 1 image/frame")
images = [readb64(image) for image in image_base64]
return images
def inference(self, images):
results = self.model(images[0])
return results
def get_response(self, inference_result):
response = []
if not bool(set([0, 2]).intersection(inference_result[0].boxes.cls.numpy())):
# if not set([0, 2]).issubset(inference_result[0].boxes.cls.numpy()):
message = "Everyone is wearing mask correctly"
else:
message = "Someone is not wearing mask or incorrectly wearing mask"
for i, result in enumerate(inference_result):
for xywhn, cls, conf in zip(
result.boxes.xywhn,
result.boxes.cls,
result.boxes.conf
):
xywhn = list(xywhn.numpy())
response.append({
'xywhn': {
'x': float(xywhn[0]),
'y': float(xywhn[1]),
'w': float(xywhn[2]),
'h': float(xywhn[3]),
},
'class': cls.item(),
'confidence': conf.item(),
})
return {'results': response,
'message': message}
def draw_bbox(self, images, inference_result):
img = np.array(images[0])
boxes = list(inference_result[0].boxes)
boxes.reverse()
for box in boxes:
img = draw_bbox_prediction(img, box)
return img
def __call__(self, data, config_payload=None, draw_bbox=False):
images = self.preprocess(data)
inference_result = self.inference(images)
response = self.get_response(inference_result)
if draw_bbox:
annotated_img = self.draw_bbox(images, inference_result)
return response, annotated_img
return response
class VideoPipeline:
def __init__(self, device='cpu', gpu_id=0, weights='weights/best.torchscript'):
self.model = YOLO(weights, task='detect')
def preprocess(self, data):
return data
def inference(self, video_path, vid_stride=30):
results = self.model(video_path, vid_stride=vid_stride)
return results
def get_response(self, inference_result):
response = []
# default message
message = "Everyone is wearing mask correctly"
for i, result in enumerate(inference_result):
if set([0, 2]).issubset(inference_result[0].boxes.cls.numpy()):
message = "Someone is not wearing mask or incorrectly wearing mask"
for xywhn, cls, conf in zip(
result.boxes.xywhn,
result.boxes.cls,
result.boxes.conf
):
xywhn = list(xywhn.numpy())
response.append({
'xywhn': {
'x': float(xywhn[0]),
'y': float(xywhn[1]),
'w': float(xywhn[2]),
'h': float(xywhn[3]),
},
'class': cls.item(),
'confidence': conf.item(),
})
return {'results': response,
'message': message}
def __call__(self, data, config_payload=None):
data = self.preprocess(data)
inference_result = self.inference(data)
response = self.get_response(inference_result)
return response
if __name__ == '__main__':
import cv2
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_type',
default='image',
const='image',
nargs='?',
choices=['image', 'video'],
help='type of input (default: %(default)s)')
parser.add_argument("-p", "--path", help="filepath")
args = parser.parse_args()
if args.input_type=='image':
results = inference_on_image(args.path)
elif args.input_type == 'video':
results = inference_on_video(args.path)
print(results)
# Examples
# python pipelines.py --input_type image --path sample_files/image-1.jpeg
# python pipelines.py --input_type video --path sample_files/video-1.mp4 |